|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
В этой части... Верный путь в густом лесу электронных устройстъ помогут найти принципиальные схемы — проводник и мире электронных компонентов и их связей
Верный путь в густом лесу электронных устройстъ помогут найти принципиальные схемы — проводник и мире электронных компонентов и их связей. В этой части будет рассказано, как читать электрические схемы и использовать их дли понимании принципов функционирования устройства: будет ли оно пищать, светиться, вращаться или делать что-то еще. Прочитав эту главу, вы наконец то поймете, что означают все эти линии и закорючки на электронных чертежах.
Глава 6 Читаем схемы В этой главе... > Назначение принципиальных схем > Изучение условных графических обозначений (УГО) большинства распространенных электронных компонентов > Использование (правильное!) информации о полярности компонентов > Погружение в мир специализированных компонентов > Забавы с принципиальными схемами со всего мира
Представьте себе путешествие через континент без карты и компаса. Велика вероятность, что горе-путешественник, отважившийся на такое, потеряет дорогу и закончит свой путь, наматывая круги где-нибудь на Сибирской равнине. Для того чтобы находить верный путь, и существуют карты. Неудивительно, что и в электронике есть их аналоги. Они называются принципиальными электрическими схемами, и в них показано, как соединены между собой все элементы устройства. На принципиальной схеме все радиодетали и соединяющие их проводники показаны условными символами и линиями. Хотя не все электронные схемы можно описать при помощи принципиальных схем, все же для большинства это сделать удается. Если вам действительно хочется стать подкованным в электронике, то рано или поздно придется выучить язык электрических схем. К тому же, он не так сложен, как может показаться на первый взгляд. В большинстве принципиальных электрических схем используется "горстка" одних и тех же схемотехнических символов, обозначающих такие распространенные компоненты, как резисторы, конденсаторы и транзисторы. В этой главе мы расскажем, что нужно знать для того, чтобы правильно читать практически любую принципиальную схему.
Что такое принципиальная схема и зачем она нужна Если вы знаете для чего нужна географическая карта, то это уже полдела для понимания необходимости в принципиальных схемах — они ведь во многом похожи на карты. Но если в картах линии используются для соединения городов и сел, то на принципиальных схемах они обозначают проводники между резисторами, конденсаторами и транзисторами, составляющими схему. Принципиальные схемы выполняют две основные функции.
> Показывают, как воспроизвести схему. Читая символы и следуя их взаимным соединениям, по принципиальной схеме можно воссоздать целое устройство. > Дают общую информацию о принципах функционирования и составе схемы, что, безусловно, помогает понять принципы работы устройства. Эти данные в высшей степени полезны при ремонте или доработке устройства.
Наука о чтении принципиальных электрических схем немного напоминает методику изучения иностранного языка. В целом, можно выделить основные правила, которым следует большинство схем, но, как в языках существуют различные диалекты, так и язык схем далек от универсальности. Схемы довольно сильно отличаются в зависимости от времени или страны создания и даже привычек разработчика! (Внимание: все условные обозначения в этой книге будут даны согласно нормам, регламентируемым ГОСТ 2.710-81 "Обозначения буквенно-цифровые в электрических схемах", ГОСТ 2.743-82 (обновлен в 1991 г.) "ЕСКД. Обозначения условные графические в схемах. Элементы цифровой техники" и ГОСТ 2.702-75 "Правила выполнения электрических схем". — Примеч. ред.)
В этой книге мы будем использовать условные графические обозначения, принятые в странах бывшего Советского Союза, но, чтобы дать представление об отличиях схем, укажем, насколько отличается символика, принятая в Европе или Америке, а также упомянем устаревшие чертежи, пришедшие из доцифровой эпохи вакуумной техники. — Примеч. ред.
Знакомство с символикой схемотехники В современных электрических схемах используются десятки, если не сотни различных символов, а в старых аналоговых схемах на вакуумных приборах времен вашего дедушки применялся еще больший арсенал. Но вам повезло — начинающему радиолюбителю достаточно выучить лишь пару дюжин условных обозначений. Остальное придет со временем. В этой главе будет рассказано о символике электронной техники, начиная с простейших компонентов — резисторов и конденсаторов — и заканчивая логическими элементами и транзисторами. Все символы можно условно разделить на 4 категории.
> Простейшие схемотехнические символы: шасси и заземление, точки пересечения и соединения, входы и выходы. > Электронные радиоэлементы: резисторы, диоды, транзисторы, катушки и конденсаторы. > Логические элементы: элементы И, ИЛИ, И-НЕ и ИЛИ-НЕ, инверторы. > Другие символы: ключи, лампы и другое оборудование.
Простейшие схемотехнические символы Простейшие, самые заурядные, символы схемотехники представляют собой механические аспекты схемы, такие как блок питания, соединения проводов, штекеры и разъемы.
Информацию о наиболее распространенных, базовых, компонентах электронных схем можно найти в главах 4 и 5, а о таких основах электричества, как источники питания и заземление, было написано в главе 1.
Питание и земля
Символы, которыми обозначают линии питания и земли выглядят так, как показано слева. Отвод на положительный потенциал имеет вид вертикальной линии со стрелкой или с кружком в верхней части, а заземление выглядит, как такая же линия, но с тремя горизонтальными черточками внизу. Питание схемы может отходить от источника переменного тока, например, бытовой электросети 220 В, или постоянного тока — батареи или пониженного с помощью трансформатора напряжения. Заземление представляет собой точку, от которой отсчитываются потенциалы всех точек схемы.
> В схемах с питанием переменным током обычно подразумевается наличие встроенного источника, понижающего напряжение питания от сети 220 В и преобразовывающего ток в постоянный. Таким образом, компоненты схемы запитываются уже постоянным током с низким напряжением. Следовательно, если взять схему какого-нибудь бытового устройства, например, видеомагнитофона, то на ней будут показаны как сторона с высоким напряжением, так и с низким. > В устройствах с питанием постоянным током на принципиальной схеме также может присутствовать несколько источников питания: скажем, один с напряжением +5 В, а второй +12 В или даже источники питания с отрицательными потенциалами (-5 и -12 В). Если же на схеме не указано напряжение питания, то в большинстве случаев (но не всегда!) подразумевается напряжение +5 В. И всегда, когда не указано обратное, считается, что схема питается от источника постоянного, а не переменного тока.
Как упоминалось в главе 1, подключение всех электрических компонентов предусматривает подсоединение как минимум двух проводов: одного — на источник питания, второго — на землю. Часто землю называют еще общим проводом. Как показано на рис. 6.1, заземление можно показывать несколькими различными способами.
> Не используя символ заземления. На принципиальных схемах некоторых устройств выводы схемы могут подключаться только к источнику питания. Это отражает тот факт, что, например, в устройствах на батарейках функцию земли (точка отсчета напряжений) представляет собой отрицательный вывод питающего элемента. > Общий символ заземления. Допускается все точки подключения к земле подвести к одному пересечению. При этом, хотя источник питания и не показан, подразумевается, что точка земли подключена к отрицательному терминалу источника питания (батареи или блока питания). > Множество символов заземления. В более сложных схемах рисовать линии соединений лишь с одной общей точкой становится проблематичным, поэтому показывают сразу несколько точек заземления. В реальной схеме все они соединены между собой и представляют один потенциал.
Существует два общепринятых символа соединения с землей: заземление как таковое и заземление на массу (рис. 6.2). Хотя на практике их часто используют взаимозаменяемо, на самом деле это немножко разные вещи. Так, соединение с настоящей землей представляет собой подключение к земляному проводу используемой электросети. В качестве этого провода применяется третий (обычно зеленый) провод в шнуре электропитания и третий контакт розетки.
Кроме соединения с землей, иногда встречается и символ заземления на шасси (его еще называют заземлением на массу). Этот термин был широко распространен лет тридцать назад, когда в качестве общей земли служили корпус устройства и его металлическое шасси (в телевизоре, например). Сегодня такое подключение не имеет прежнего [применения, но термин остался до сих пор.
В этой книге далее будет использоваться только классический символ заземления, поскольку в настоящее время он фактически стал стандартом.
Электрические соединения Компоненты схемы можно соединять между собой или просто проводами, или - проводящими дорожками на печатной плате. Подробнее о печатных платах и о том, как изготавливать их самостоятельно, вы узнаете в главе 12. В большинстве принципиальных схем не делается отличий в том, как именно соединяются между собой радиодетали. Вид соединения относится целиком к области ваших предпочтений. Схема служит лишь для указания того, как именно взаимно расположены или соединены проводники.
И принципиальные схемы не совершенны! На тех схемах, где не используются разрывы проводников или петли, присутствие пересечения сбязательно нужно указывать жирной точкой; отсутствие же пересечения не указывается никак. Что же произойдет, если человек, рисовавший схему, забудет поставить точку? Как ни жаль признавать, в схемах также встречаются ошибки, как и везде в этом несовершенном мире. Если только что построенная схема после включения не работает, то первая вещь, которую можно предположить, — отсутствие где-либо нужного соединения. Однако, пока человек, собравший схему, не будет достаточно подготовлен к поиску неполадок, решение этой проблемы может оказаться весьма непростым делом. В таком случае лучше всего попытаться найти рисовавшего схему и выяснить правильность чертежа у него.
В сложных электрических схемах линии могут пересекаться другими проводниками. Необходимо совершенно точно выяснить, когда такие пересечения отображают реальные точки соединения проводников, а когда вызваны просто невозможностью нарисовать чертеж иначе. В идеальном случае, рисуя принципиальные схемы, следует руководствоваться следующими правилами.
> Отсутствие контакта проводников иногда обозначают разрывом цепи или петлей. (Согласно принятым у нас нормам непересекающиеся на схеме проводники не прерывают. Примеч. ред.) > Пересечение проводников (наличие контакта) нужно показывать жирной точкой в месте соединения.
Эти вариации отображения на схемах пересечения показаны на рис. 6.3.
Приведенные выше рекомендации по рисованию точек пересечения не являются стандартом, поэтому всегда лучше ознакомиться с применяемыми в данной ситуации (на фирме, в стране) правилами, изучив хотя бы пару схем. К примеру, если в одной фирме не принято показывать контакт жирной точкой в месте пересечения линий, обозначающих проводники, то в другой компании ее отсутствие может совершенно определенно означать, что данные проводники не имеют контакта.
Штекеры, разъемы, гнезда На рисунке слева изображены двухпроводной штекерный разъем и, ниже, экранированный разъем — два широко применяемых в электронике типа гнезд. Большинство электронных схем так или иначе взаимодействуют с окружающим миром. Возьмем, к примеру, усилитель для электрогитары. Он, как минимум, должен иметь разъем, в который вставляется шнур от гитары. В других устройствах точно так же можно встретить всевозможные разъемы, гнезда и соединители, которые служат для создания интерфейса, независимо от того, имеете вы дело с датчиком температуры, микрофоном или батарейным отсеком. Для соединения отдельных плат или устройств чаще всего применяются следующие пассивные элементы.
> Гнездо и штекер. Эти два элемента всегда идут вместе и представляют собой идеально подходящую пару, поскольку штекер представляет собой ответную часть к гнезду. > Разъем. Разъемом называется любой соединитель, который позволяет легко и быстро соединить проводниками или разъединить два устройства или узла схемы. Разъем может представлять собой как специальное гнездо на несколько контактов, так и обычную клеммную колодку.
Схемотехнические символы, которыми обозначают разъемы, гнезда и штекеры, могут иметь множество форм. В этой книге будут использоваться наиболее употребительные из них, и хотя стиль изображения условных обозначений может варьироваться от схемы к схеме в довольно широких пределах, предназначение самого элемента остается единым — соединение между собой различных приборов или устройств.
Условные графические обозначения электронных радиоэлементов Без преувеличений, можно найти сотни различных символов, обозначающих электронные компоненты, потому что самих компонентов вы насчитаете, пожалуй, не меньше. К счастью, начинающий радиолюбитель вряд ли столкнется с большинством из них, и ему останется лишь выучить пару десятков простых символов. Этот подраздел начнем с обсуждения текстовых обозначений, которые могут сопровождать схемотехнические символы электронных компонентов на схемах, и только затем перейдем к самой символике, разделив все радиоэлементы на категории.
По ходу дела не стоит стесняться возвращаться обратно к главам 4 и 5, чтобы обновить сведения об уже известных радиодеталях.
Символы радиоэлементов и их компания Символы, обозначающие радиоэлектронные элементы, практически никогда не рисуются сами по себе: почти всегда их сопровождает дополнительная информация.
> Наименование элемента в схеме. Запись вида "R1" или "Q3". По договоренности тип элемента указывает буква (или несколько), а уж если элементов данного типа в схеме имеется несколько, то рядом ставятся порядковые номера. Так, буквой R принято обозначать резисторы, буквой С — конденсаторы, буквами VD (в зарубежных схемах D) — диоды, L — катушки индуктивности, Т — трансформаторы, VT (в зарубежных схемах Q) — транзисторы, и, наконец, литерой D (за рубежом — U) — интегральные микросхемы. — Примеч. ред. > Номер (серия) элемента. Используется, если применяется стандартный электронный компонент, такой как транзистор или интегральная схема, с присвоенным фирмой-производителем шифром. Номер записывается согласно обозначению производителя: например, 2N2222 (широко применяемый биполярный транзистор) или 555 (интегральная схема таймера). > Номинал (значение) компонента. Пишется, если номер элемента не полностью определяет его свойства. Значения величины какого-то параметра вписываются обычно для дискретных пассивных радиодеталей: это величина сопротивления для резисторов или емкости для конденсаторов. К примеру, возле резистора может стоять надпись, показывающая его сопротивление в омах, килоомах (если рядом стоит буква К) или мегаомах (рядом пишется буква М). Эти цифры, если, конечно, они применимы в данному радиоэлементу, пишутся рядом с наименованием электронного компонента. (Желательно справа от него или внизу. — Примеч. ред.)
Для обеспечения правильного функционирования устройства принципиальная схема может также содержать дополнительные сведения о радиоэлектронных компонентах. К примеру, если на схеме не указаны мощности резисторов, то можно с уверенностью предположить, что максимальная мощность всех имеющихся резисторов не превышает 1/4 или 1/8 Вт (стандартные значения). В случае же, если некоторые резисторы должны иметь номинальную мощность не менее 1 или даже 10 Вт, то эту цифру можно указать рядом с символом. То есть, необходимые специальные комментарии допускается использовать как в дополнительных документах на изделие (перечне элементов), так и на самой принципиальной схеме или в приложении к ней.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.015 сек.) |