|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Пектиновые веществаПектиновые вещества – это соединения, состоящие главным образом, из метоксилированной полигалактуроновой кислоты. Остатки галактуроновой кислоты соединены a-1,4 гликозидной связью. Вместе с целлюлозой, гемицеллюлозой и лигнином пектиновые вещества образуют клеточные стенки растений, являясь цементирующим материалом этих стенок, объединяют клетки в единое целое в том или ином органе растений.
Различают три основные группы пектиновых веществ: протопектины, пектиновая кислота, пектаты, пектин. Для всех нерастворимых пектиновых веществ существует общее название – протопектин. Основным структурным компонентом протопектина служит галактуроновая кислота, из которой состоит главная цепь, в состав боковых цепей входят арабиноза, галактоза и рамноза. Часть кислотных групп галактуроновой кислоты этерифицирована метиловым спиртом. В общем виде структуру протопектина можно представить схематически: Протопектин легко расщепляется ферментом протопектиназой, переходя в растворимую форму – пектин. Пектином называют водорастворимое вещество, свободное от целлюлозы и гемицеллюлоз и состоящее из частично или полностью метоксилированных остатков полигалактуроновой кислоты (фрагмент структуры см. выше). Пектин содержит 100-200 остатков Д-галактуроновой кислоты. Определить степень метоксилирования затруднительно, так как эфирные связи при экстракции разрываются. При созревании и хранении плодов происходит переход нерастворимых форм пектина в растворимые. С этим явлением связано размягчение плодов. Пектиновая кислота – это цепь, состоящая из остатков Д-галактуроновой кислоты. Соли пектиновых кислот (чаще всего Са или Mg) называют пектатами. Большинство пектиновых кислот содержит от 5 до 100 этих остатков. Пектиновые вещества содержатся в большом количестве в ягодах, плодах, клубнях. Важное свойство пектиновых веществ – способность их к желированию, т.е. свойство образовывать прочные студни в присутствии большого количества сахара (65-70%). Частичный гидролиз метиловых эфиров приводит к снижению желирующей способности. Пектиновая кислота не способна образовывать желе в присутствии сахара. Поэтому при промышленном получении пектиновых веществ процесс выделения пектина необходимо вести так, чтобы избежать гидролиза метоксильных групп, вызывающего снижение желирующей способности. На желирующей способности пектиновых веществ основано использование их в качестве студнеобразующего компонента в кондитерской промышленности для производства конфитюров, мармелада, пастилы, желе, джемов, а так же в консервной промышленности, хлебопечении. Пектиновые вещества играют в пищевой промышленности и отрицательную роль. В свеклосахарном производстве пектиновая кислота и пектин из свекловичной стружки переходят в диффузионный сок, в котором при его дальнейшей очистке с помощью известкового молока образуются пектаты кальция, в результате чего резко возрастает вязкость очищенного сока, что затрудняет его фильтрацию. Пектиновые вещества расщепляются под действием ряда ферментов: протопектиназы, пектинэстеразы, полигалактоуроназы. Схематически ферментативный гидролиз протопектина можно представить так: Ферментативный гидролиз пектина может протекать с участием двух ферментов: пектинэстеразы и полигалактуроназы. Метоксилированная полигалактуроновая кислота Пектинэстеразы удаляют метильные группы, гидролизуя сложноэфирные связи находящиеся рядом со свободными карбоксильными группами, т.е. идет реакция: пектин + n Н2О ® n метанол + пектин (менее этерифицированный) Таким образом, пектиновые вещества ответственны за содержание токсичного вещества метанола во фруктовых соках, плодово-ягодных винах Полигалактуроназа катализирует расщепление α-(1-4)-гликозидной связи, образованной неэтерифицированной галактуроновой кислотой.. Препараты, содержащие ферменты, гидролизующие пектиновые вещества, получают обычно из различных плесневых грибов. Эти препараты применяются в пищевой промышленности для осветления фруктовых соков и повышения их выхода, а также для осветления плодовых и виноградных вин, в которых обычно содержится большое количество растворимого пектина, затрудняющего фильтрование и являющегося причиной недостаточной прозрачности вин. Гемицеллюлозы Гемицеллюлозы – это сложная смесь полисахаридов, не растворяющихся в воде, но растворимых в щелочных растворах. Гемицеллюлозы всегда сопутствуют целлюлозе, в больших количествах содержатся в соломе, семенах, отрубях, кукурузных початках, древесине. В комплексе с целлюлозой выполняют структурную функцию. Гемицеллюлозы могут быть подразделены на гексозаны (маннаны, галактаны) и пентозаны (арабаны, ксиланы). Продуктами гидролиза у различных гемицеллюлоз являются манноза, галактоза, арабиноза, ксилоза. Гемицеллюлозы пшеничных отрубей – это высокоразвитые ксиланы, состоящие в основном из Д-ксилозы, L-арабинозы и глюкуроновой кислоты. Из гемицеллюлоз промышленное применение нашли галактоманнаны, построенные из маннозы, образующей главную цепь, и галактозы, образующей короткие боковые цепи. Галактоманнаны обладают большой способностью связывать воду, поэтому они улучшают качество замеса, участвуют в формировании структуры теста, в частности, в формировании клейковины, тормозят черствение хлеба. Растворы галактоманнанов даже при концентрации 1% обладают высокой вязкостью, что объясняется вытянутой формой макромолекул и их склонностью образовывать в растворах крупные ассоциаты. Это свойство позволяет использовать их в качестве загустителей, стабилизаторов дисперсных систем, гелеобразователей. Галактоманнаны получают из семян бобовых культур. Их используют при производстве различных пищевых продуктов, супов, соусов, мороженого, кремов, желе, напитков. Фирма «Юнипектин» (Швейцария) использует галактоманнаны в 40 наименованиях пищевых продуктов. Камеди и слизи К полисахаридам близки камеди и слизи. В их состав входят сахара – арабиноза, ксилоза, галактоза, рамноза, а также глюкуроновая и галактуроновая кислоты. Камеди образуют при набухании в воде вязкие гели или клейкие растворы, слизи при контакте с водой образуют слизистые массы. Камеди образуются в ответ на повреждения тканей растения в виде плотных блестящих натеков (вишневый, сливовый клей). Слизи содержатся в покровных тканях семян льна и зерновки ржи. Кроме защитной функции камеди и слизи могут повышать засухоустойчивость растения, способствуя удержанию влаги. Слизи имеют большое значение при переработке зерна ржи. Они повышают вязкость ржи при размоле, поэтому оно вымалывается труднее, чем пшеница и энергозатраты на размол у него выше. Слизи влияют на структурно-механические свойства в тесте, а, следовательно, и на качество хлеба. Мукополисахариды Мукополисахариды получили свое название потому, что ряд веществ этого класса имеют слизистую консистенцию (от лат. mucus – слизь). Для мукополисахаридов характерно наличие их в молекулах значительного количества остатков аминосахаров и уроновых кислот. Это полисахариды соединительной ткани. Мукополисахариды обычно связаны с белками. Важнейшими представителями этой группы полисахаридов являются гиалуроновая кислота, хондроитин-серные кислоты и гепарин. Гиалуроновая кислота построена из дисахаридных остатков, соединенных b-1,4-гликозидными связями. Дисахаридный фрагмент состоит из остатков D-глюкуроновой кислоты и N-ацетил-D-глюкозамина, связанных b-1,3-гликозидной связью: Гиалуроновая кислота имеет высокую молекулярную массу порядка 106, растворы ее обладают высокой вязкостью. Высокая вязкость гиалуроновой кислоты отчасти вызвана ее полианионным характером при физиологических значениях рН, которые способствуют гидратированию цепей и образованию между ними водородных связей. Вследствие высокой вязкости она понижает проницаемость тканевых оболочек и препятствует проникновению в ткани болезнетворных микроорганизмов. Особенно высоко ее содержание в коже, стекловидном теле глаза, сухожилиях. Гиалуроновой кислоте присущи не только структурные функции. Пронизывая ткани в качестве межклеточного вещества гиалуроновая кислота регулирует поступление в клетки тех соединений, которые или нужны для жизнедеятельности клетки или являются ее продуктом. Хондроитинсульфат – непременная составляющая часть хряща, костной ткани, сухожилий, сердечных клапанов. Хондроитинсульфат прочно связан с белком коллагеном. Хондроитинсульфаты состоят из дисахаридных остатков N-ацетилированного хондрозина, соединенных b-1,4-гликозидными связями. В состав хондрозина входят D-глюкуроновая кислота и D-галактозамин, связанные между собой b-1,3-гликозидной связью.
Как свидетельствует само название, эти полисахариды являются эфирами серной кислоты (сульфатами). Сульфатная группа образует эфирную связь с гидрокисльной группой N-ацетил-D-галактозамина, находящейся либо в 4-м, либо в 6-м положении. Соответственно различают хондроитин-4-сульфат и хондроитин-6-сульфат. Наличие дополнительных SO3-группировок сообщает еще больший полианионный характер хондроитинам. Гепарин – гетерополисахарид, широко распространенный в тканях животного организма и особенно в значительных количествах содержащийся в печени, сердце, мышцах и легких. Ничтожные количества гепарина задерживают свертывание крови, т.е. он является сильным природным антикоагулянтом. Благодаря этому гепарин получил практическое применение в медицине. Гепарин состоит из повторяющихся дисахаридных единиц, в состав которых входят остатки D-глюкозамина и двух уроновых кислот – D-глюкуроновой и L-идуроновой (преобладает). Внутри дисахаридного фрагмента осуществляется a-1,4-связь, если фрагмент оканчивается L-идуроновой кислотой, и b-1,4-связь, если D-глюкуроновой кислотой. Аминогруппа у большинства глюкозаминных остатков сульфатирована, а у некоторых из них – ацетилирована. Пищевые волокна Основным источником углеводов в пище человека являются продукты растениеводства. С биохимической точки зрения все углеводы пищи можно подразделить на усвояемые организмом и неусвояемые. Усвояемые углеводы являются основным источником химической энергии в организме, т.е. при их диссимиляции выделяется энергия, необходимая для различных метаболических процессов. Неусвояемые углеводы не перевариваются в желудочно-кишечном тракте, не всасываются в кишечнике, а если и всасываются, то не вступают в метаболические процессы в организме. К неусвояемым углеводам относятся полисахариды: целлюлоза, гемицеллюлозы, пектиновые вещества; олигосахариды: рафиноза, а также некоторые простые сахара. Пищеварительные секреты слюнной железы, желудка и кишечника не выделяют ферментов, способных расщеплять эти углеводы. Неусвояемые полисахариды образуют группу балластных веществ, называемых пищевыми волокнами. В технологии пищевых продуктов стремятся от них избавиться с целью получения более «рафинированной» пищи. Однако, присутствие их в пищевых продуктах необходимо. Доказано, что недостаток в рационе пищевых волокон является причиной многих желудочно-кишечных заболеваний, атеросклероза и диабета, поскольку они играют существенную роль в поддержании нормальной регуляции питания и метаболизма ряда веществ способствуют лучшему функционированию кишечника. Пищевые волокна, набухая в кишечнике, приобретают способность сорбировать и удалять из организма вредные вещества (токсины), катионы тяжелых металлов, радионуклиды, т.е. выполняют энтеросорбентную функцию. Кроме того, пищевые волокна нормализуют обмен холестерина, способствуют нормальному развитию полезной кишечной микрофлоры. Плоды и овощи - морковь, капуста, свекла – содержат относительно большое количество пищевых волокон – до 1,5%. Не обладая высокой энергетической ценностью, большинство овощей из-за обилия в них клетчатки способствуют раннему и довольно стойкому чувству насыщения. Это свойство пищевых волокон трудно переоценить в комплексе мер профилактики и терапии ожирения. Все это позволило отнести пищевые волокна к одному из резервов здорового долголетия. В суточном рационе взрослого человека должно содержаться 25-30 г пищевых волокон. Наиболее полезны – пектины, лигнин, целлюлоза и гемицеллюлоза пшеничных отрубей, затем идут волокна капусты, затем – морковь. Обмен углеводов Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.) |