АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Скопления лимфоидной ткани в тонкой кишке

Читайте также:
  1. В остальных участках (т.н. тонкой) кожи имеется 4 слоя клеток эпидермиса, - здесь отсутствует блестящий слой.
  2. ВИДИ ТКАНИН. РЕГЕНЕРАТИВНІ ВЛАСТИВОСТІ РІЗНИХ ТКАНИН
  3. Виды хрящевой ткани, возрастные изменения и регенерация хряща
  4. Г. Парафолликулярные скопления лимфоидной ткани - Т-зона
  5. Гистофизиология процессов пищеварения и всасывания в тонкой кишке
  6. Граф логической структуры темы «Костные ткани»
  7. Два вида костной ткани, клетки и межклеточное вещество, функции.
  8. ЗАКРИТІ УШКОДЖЕННЯ М’ЯКИХ ТКАНИН
  9. Из каких источников НЕ развиваются мышечные ткани?
  10. К тканям внутренней среды относятся соединительные ткани, кровь и лимфа.
  11. Какие процессы обеспечивают рост хрящевой ткани после рождения?
  12. КЛАССИФИКАЦИЯ ЭПИТЕЛИАЛЬНОЙ ТКАНИ

Лимфоидная ткань (GALT, входящая в состав диффузной лимфоидной системы, ассоциированной со слизистыми - MALT) широко распространена в тонкой кишке в виде лимфатических узелков и диффузных скоплений лимфоцитов и выполняет защитную функцию. Одиночные (т.н. солитарные) лимфоидные узелки (noduli lymphatici solitarii) встречаются на всем протяжении тонкой кишки в слизистой оболочке. Диаметр их около 0,5—3 мм. Более крупные узелки, лежащие в дистальных отделах тонкой кишки, проникают в мышечную пластинку ее слизистой оболочки и располагаются частично в подслизистой основе. Количество одиночных лимфоидных узелков в стенке тонкой кишки детей от 3 до 13 лет составляет около 15 000. По мере старения организма количество их уменьшается. Сгруппированные лимфоидные узелки (noduli lymphatic aggregati), или пейеровы бляшки, как правило, располагаются в подвздошной кишке, но иногда встречаются в тощей и двенадцатиперстной кишке. Число узелков варьирует в зависимости от возраста: в тонкой кишке у детей около 100, у взрослых — около 30—40, а в старческом возрасте их количество значительно уменьшается.

Длина одного сгруппированного лимфоидного узелка может быть от 2 до 12 см, а ширина — около 1 см. Наиболее крупные из них проникают в подслизистую основу. Ворсинки в слизистой оболочке в местах расположения сгруппированных лимфоидных узелков, как правило, отсутствуют. Для эпителиальной выстилки, расположенной над узелками; характерно, как уже указывалось, наличие М-клеток (клеток с микроскладками), через которые транспортируются антигены, стимулирующие лимфоциты. Образующиеся в фолликулах плазмоциты секретируют иммуноглобулины (IgA, IgG, IgM), главным из которых является IgA. На один плазмоцит, секретирующий IgG, приходится 20—30 плазмоцитов, продуцирующих IgA, и 5 — продуцирующих IgM. IgA в отличие от других иммуноглобулинов более активны, так как не разрушаются протеолитическими ферментами кишечника. Резистентность к кишечным протеазам обусловлена соединением IgA с секреторным компонентом, образуемым эпителиоцитами. В эпителиоцитах синтезируется гликопротеин, который включается в их базальную плазмолемму (трансмембранный гликопротеин) и служит Fc-рецептором для IgA. При соединении IgA с Fc-рецептором образуется комплекс, который с помощью эндоцитоза поступает в эпителиоцит и в составе трансцитозной везикулы переносится в апикальную часть клетки и выделяется в просвет кишки путем экзоцитоза через апикальную плазмолемму. При выделении указанного комплекса в просвет кишки от него отщепляется только часть гликопротеина, непосредственно связанная с IgA и называемая секреторным компонентом. Остальная его часть («хвост» молекулы) остается в составе плазмолеммы. В просвете кишки IgA осуществляет защитную функцию, нейтрализуя антигены, токсины, микроорганизмы. Васкуляризация. Артерии, входя в стенку тонкой кишки, образуют три сплетения: межмышечное — между внутренним и наружным слоями мышечной оболочки; широкопетлистое — в подслизистой основе и узкопетлистое — в слизистой оболочке. Из последнего выходят артериолы, образующие кровеносные капилляры вокруг кишечных крипт, и по 1—2 артериолы, входящие в каждую ворсинку и распадающиеся там на капиллярные сети. Из кровеносных капилляров ворсинки кровь собирается в венулу, проходящую вдоль ее оси. Вены тонкой кишки образуют два сплетения — сплетение в слизистой оболочке и сплетение в подслизистой основе. Имеются многочисленные артериоловенулярные анастомозы типа замыкающих артерий, регулирующие приток крови к кишечным ворсинкам. Во время акта пищеварения анастомозы между артериями и венами закрыты, и вся масса крови устремляется в слизистую оболочку, к ее ворсинкам. В период голодания анастомозы открыты и основная масса крови проходит, минуя слизистую оболочку. Запирающие вены регулируют объем венозного оттока от тонкой кишки. В случае резкого переполнения эти вены могут депонировать значительные количества крови. Лимфатические сосуды тонкой кишки представлены очень широко разветвленной сетью. В каждой кишечной ворсинке есть центрально расположенный, слепо оканчивающийся на ее вершине лимфатический капилляр. Просвет его шире, чем в кровеносных капиллярах. Из лимфатических капилляров ворсинок лимфа оттекает в лимфатическое сплетение слизистой оболочки, а из него в соответствующее сплетение подслизистой основы, образованное более крупными лимфатическими сосудами. В это сплетение вливается также густая сеть капилляров, оплетающих одиночные и групповые лимфатические узелки. Из подслизистого сплетения отходят лимфатические сосуды, находящиеся между слоями мышечной оболочки. Иннервация. Афферентная иннервация осуществляется мышечно-кишечным чувствительным сплетением (plexus myentericus sensibilis), образованным чувствительными нервными волокнами спинальных ганглиев и их рецепторными окончаниями. Ветвистые и кустиковые нервные окончания часто встречаются в подслизистой основе и собственной пластинке слизистой оболочки. Их терминальные веточки достигают сосудов, дуоденальных желез, эпителия кишечных крипт и ворсинок. Обильные ветвления чувствительных волокон наблюдаются в подвздошной кишке и илеоцекальной области, где преобладают кустиковидные формы рецепторов. Отдельные рецепторы имеются в самих нервных ганглиях. Эфферентная иннервация осуществляется симпатическими и парасимпатическими нервами. В толще стенки кишки хорошо развиты парасимпатические мышечно-кишечное и подслизистое нервные сплетения. Мышечнокишечное сплетение (plexus myentericus) наиболее развито в двенадцатиперстной кишке, где наблюдаются многочисленные, плотно расположенные крупные ганглии. Количество и размеры ганглиев в тонкой кишке уменьшаются в каудальном направлении. В ганглиях различают клетки Догеля I и II типа, причем клеток I типа значительно больше. Для тонкой кишки по сравнению с другими отделами пищеварительной трубки характерно наличие большого количества клеток II типа. Их особенно много в двенадцатиперстной кишке, в начальном отделе подвздошной кишки и в илеоцекальной области.

Особенности структуры и функции сосудов микроциркуляторного русла кишечной ворсинки.Кровеносные и лимфатические сосуды ворсинок активно участвуют в процессах всасывания и транспортировки веществ, поступающих с пищей. Кровеносные сосуды. В ворсинку входит обычно одна прекапиллярная артериола, располагающаяся в центре или эксцентрично. На вершине ворсинки она делится на два распределительных магистральных капилляра, которые спускаются по двум краям (маргинально) листовидной ворсинки, располагаясь подэпителиально. Из магистральных (маргинальных) капилляров образуются фонтанообразные капиллярные сети (из 3—5 капилляров), которые располагаются подэпителиально вдоль двух плоских стенок (краниальной и каудальной) ворсинок. Это гемокапилляры висцерального типа с фенестрированными эндотелиоцитами, в которых ядросодержащая часть обращена к строме ворсинки, а фенестрированная часть с межэндотелиальными контактами — к эпителию. Из капилляров среднего и нижнего отделов ворсинки образуется, как правило, одна посткапиллярная венула, из которой кровь поступает в вены следующего этапа.

Маргинальные капилляры по краям ворсинки составляют блок шунтирования, а капилляры на ее краниальной и каудальной поверхностях — блок абсорбции. Их состояние зависит от цикла пищеварения (голод или поступление пищи). В состоянии функционального покоя (голод) микрососуды блока шунтирования работают как полушунты: кровь идет по центральной артериоле, от нее по маргинальным и далее по фонтанообразным капиллярам краниальной и каудальной поверхностей, а далее в венулу. Капилляры подэпителиальной сети краниальной и каудальной стенок имеют ограниченную функцию.

При функциональной нагрузке (поступление пищи) маргинальные капилляры превращаются в резорбирующие сосуды и в кровоток включаются все капилляры подэпителиальной сети.

Таким образом, при усилении процессов всасывания пищи начинают активно функционировать все капилляры подэпителиальных сетей на краниальной и каудальной стенках ворсинки; дополнительно в процессы абсорбции включаются микрососуды блока шунтирования.

Лимфатические капилляры расположены в верхней и средней частях ворсинки, на постоянном по величине расстоянии от ее ребер. Между эндотелиоцитами имеются плотные и адгезивные контакты, базальная мембрана в лимфокапиллярах отсутствует. В зоне контактов осуществляется перенос молекул белков средней относительной молекулярной массы и липидов (в виде хиломикронов). При приеме пищи появляются открытые межклеточные щели вследствие сокращения эндотелиоцитов.

Во внесосудистом транспорте жидкости принимает участие межклеточное вещество соединительной ткани ворсинки. В интерстициальной части ворсинки можно выделить две зоны — центральную и подэпителиальную.

В подэпителиальной зоне происходит накопление белков, поступающих из гемокапилляров. Большие концентрации белков в этой зоне являются важнейшим фактором, обеспечивающим всасывание жидкости из плоскости кишки (т.н. «онкотический насос»). Объем интерстициального пространства в центральной зоне меняется в зависимости от поступления в него жидкости, белков, липидов и может увеличиваться более чем в 2 раза, в то время как в подэпителиальной части он меняется незначительно. Увеличение концентрации белка в направлении к базальной части ворсинки обусловливает перемещение масс жидкости из ее апикальных отделов к основанию. Таким образом, существует два вектора транспорта интерстициальной жидкости: 1 — радиальный — от периферии ворсинки к ее центру, 2 — аксиальный — от верхушки ворсинки к основанию. Фильтрация жидкости из гемокапилляров в интерстициальное пространство ворсинки происходит в состоянии функционального покоя (голода) и обусловлена увеличением гидростатического и коллоидно-осмотического давления в капилляре вследствие расслабления прекапиллярных сфинктеров. Поток жидкости из плазмы уравновешивается базовым уровнем лимфооттока, поэтому объем интерстициального пространства ворсинки остается постоянным. При активном всасывании веществ из просвета кишки происходит двукратное увеличение потока лимфы (часть интерстициальной жидкости резорбируется в гемокапилляры). В оттекающей лимфе увеличивается количество белков, усиленно поступающих в интерстиций. Содержание белка больше в подэпителиальном слое, что связано с наличием здесь густой сети капилляров и особенностью строения эндотелиоцитов (фенестры и межклеточные контакты) в этой зоне. В переносе белков важную роль играют специальные структуры, короткие трансэндотелиальные каналы и «протекающие» межклеточные контакты (конвективные пути). Усиление процессов пищеварения приводит к усиленному транспорту белков в большей части гемокапилляров и в микрососудах основания ворсинки, что сопровождается интенсивным всасыванием жидкости из полости кишки, прежде всего в апикальные отделы ворсинки. Сочетанный эффект фильтрации жидкости из капилляров и ее поступление из полости кишки приводит к гидратации интерстициального пространства и возрастанию гидростатического давления; при этом объем межклеточного матрикса увеличивается более чем в 2 раза. Гидростатическое давление в верхних и средних отделах ворсинки стимулирует процесс резорбции в лимфокапиллярах.

Гистофизиология процессов пищеварения и всасывания в тонкой кишке

 

Пищеварение в тонкой кишке включает два основных процесса: 1) дальнейшую ферментативную обработку веществ, содержащихся в химусе, до конечных продуктов и подготовку их к всасыванию; 2) всасывание. Процессы пищеварения происходят в различных зонах кишки, в связи с чем различают внеклеточное и внутриклеточное пищеварение. Внутриклеточное пищеварение осуществляется уже в цитоплазме энтероцитов. Внеклеточное пищеварение различают: полостное (в полости кишки), пристеночное (около стенки кишки), мембранное (на апикальных частях плазмолеммы энтероцитов и их гликокаликсе). Внеклеточное пищеварение в полости кишки осуществляется за счет трех компонентов — ферментов пищеварительных желез (слюнных, поджелудочной), ферментов кишечной флоры и ферментов самих пищевых продуктов. Пристеночное пищеварение происходит в слизистых отложениях тонкой кишки, которые адсорбируют различные ферменты полостного пищеварения, а также ферменты, выделяемые энтероцитами. Мембранное пищеварение происходит на границе внеклеточной и внутриклеточной среды. На плазмолемме и гликокаликсе энтероцитов пищеварение осуществляется двумя группами ферментов. Первая группа ферментов образуется в поджелудочной железе (α-амилаза, липаза, трипсин, химотрипсин, карбоксипептидаза). Они адсорбируются гликокаликсом и микроворсинками, при этом основное количество амилазы и трипсина адсорбируются на апикальной части микроворсинок, а химотрипсина — на латеральных зонах. Вторая группа — ферменты, имеющие кишечное происхождение, они связаны с плазмолеммой энтероцитов.

Гликокаликс, помимо адсорбции ферментов, участвующих в пищеварении, играет роль фильтра, избирательно пропускающего лишь те вещества, для которых имеются адекватные ферменты. Кроме того, гликокаликс выполняет защитную функцию, обеспечивая изоляцию энтероцитов от бактерий и образованных ими токсических веществ. В гликокаликсе находятся рецепторы для гормонов, антигенов, токсинов.

 

Внутриклеточное пищеварение происходит внутри столбчатых эпителиоцитов, обеспечивается их ферментами, в основном находящимися в лизосомах. Неполностью расщепленные низкомолекулярные вещества попадают в эпителиоцит путем эндоцитоза или трансмембранного переноса. Эндоцитозные вакуоли сливаются с лизосомами, и их содержимое гидролизуется с помощью соответствующих гидролаз. Этот тип пищеварения является филогенетически более древним. У позвоночных внутриклеточное пищеварение путем эндоцитоза наблюдается лишь в первые дни после рождения. Этим путем антитела матери, находящиеся в молозиве и молоке, могут передаваться новорожденным и обеспечивать их иммунологическую защиту. Образующиеся при расщеплении белков, углеводов и жиров мономеры — аминокислоты, моносахариды, моноглицериды и жирные кислоты — далее через эпителиоциты всасываются в кровь и лимфу.

Всасывание — это прохождение продуктов конечного расщепления пищи (мономеров) через эпителий, базальную мембрану, сосудистую стенку и поступление их в кровь и лимфу. Гистофизиология всасывания продуктов расщепления белков, углеводов и жиров имеет некоторые особенности.

Всасывание жиров — наиболее изученный процесс. У человека большая часть липидов всасывается в двенадцатиперстной кишке и верхней части тощей кишки. Главную роль в расщеплении липидов и их обработке играют липазы (поджелудочной железы и кишечника) и печеночная желчь.

В кишечнике происходит эмульгирование жиров с помощью желчных кислот, поступающих с желчью, при этом образуются капельки величиной не более 0,5 мкм. Желчные кислоты являются также активаторами панкреатической липазы, которая расщепляет эмульгированные триглицериды и диглицериды до моноглицеридов. Кишечная липаза расщепляет моноглицериды до жирных кислот и глицерина. Расщепление происходит с помощью ферментов плазмолеммы и гликокаликса энтероцита. Жирные кислоты с короткой углеродной цепочкой и глицерин хорошо растворяются в воде и свободно всасываются, поступая через воротную вену в печень. Жирные кислоты с длинной углеродной цепью и моноглицериды всасываются при участии солей желчных кислот, с которыми в зоне гликокаликса образуют мицеллы диаметром 4—6 нм. Мицеллы по размерам в 150 раз меньше, чем эмульгированные капли, и состоят из гидрофобного ядра (жирные кислоты и глицероиды) и гидрофильной оболочки (желчные кислоты, фосфолипиды). В составе мицелл жирные кислоты и моноглицериды переносятся к всасывающей поверхности кишечного эпителия. Существует два механизма поступления липидов в эпителиоциты: 1) путем диффузии и пиноцитоза мицелл, далее происходит их внутриклеточный распад с высвобождением липидного компонента и желчных кислот, желчные кислоты поступают в кровь, а затем в печень; 2) только липиды мицелл поступают в эпителиоциты, а желчные кислоты остаются в просвете кишечника и далее всасываются в кровь. Имеет место постоянная рециркуляция желчных кислот между печенью и кишечником (энтерогепатическая циркуляция). В ней участвует основная масса желчных кислот — 85—90 % от общего их количества. Мицеллы путем диффузии или микропиноцитоза проникают через плазмолемму и поступают в аппарат Гольджи, где происходит ресинтез жиров. К жирам присоединяются белки, и формируются липопротеиновые комплексы — хиломикроны. При введении с пищей небольших количеств жира в аппарате Гольджи накапливается в течение 1 ч небольшое количество липидов, при введении больших количеств жира липиды в течение 2 ч накапливаются в аппарате Гольджи и в мелких пузырьках апикальной частиэнтероцитов. Слияние этих мелких пузырьков с элементами аппарата Гольджи приводит к образованию крупных капель липидов.

В эпителиоцитах происходит ресинтез жиров, специфичных для данного вида животных; они поступают в цитоплазму большинства клеток и тканей. Ресинтез жиров из жирных кислот и моноглицеридов происходит с помощью ферментов (моноглицеридлипаза, глицеролкиназа), при этом образуются триглицериды (особенно глицерофосфолипиды). Глицерофосфолипиды ресинтезируются в эпителиоцитах из жирных кислот, глицерина, фосфорной кислоты и азотистых оснований.

Холестерин поступает с пищей в свободном виде или в виде его эфиров. Фермент панкреатического и кишечного соков — холестеролэстераза — расщепляет эфиры холестерина на холестерин и жирные кислоты, которые всасываются в присутствии желчных кислот.

Ресинтезированные триглицериды, фосфолипиды, холестерин соединяются с белками и образуют хиломикроны — маленькие частицы диаметром от 100 до 5000 нм (0,2—1 мкм). В них содержатся более 80% триглицеридов, холестерин (8%), фосфолипиды (7%) и белок (2%). Путем экзоцитоза они выделяются из эпителиоцитов на их латеральной поверхности, поступают в межэпителиальные пространства, в соединительнотканный матрикс и в лимфокапилляры. Из лимфокапилляров хиломикроны поступают в лимфу грудного протока и далее в кровеносное русло. После приема жиров с пищей через 1—2 ч в крови повышается концентрация триглицеридов и появляются хиломикроны, через 4—6 ч их содержание становится максимальным, а через 10—12 ч — нормальным, и они полностью исчезают. Большая часть хиломикронов поступает в лимфатические капилляры и немного в гемокапилляры. Липиды с длинными углеродными цепями поступают главным образом в лимфокапилляры. Жирные кислоты с меньшим числом углеродных атомов поступают в гемокапилляры.

Всасывание углеводов. Расщепление молекул гликогена и крахмала до мальтозы осуществляется а-амилазой поджелудочной железы и глюкозидами. Далее мальтоза гидролизуется ферментом мальтазой на 2 молекулы глюкозы, а сахароза — ферментом сахаразой на молекулы глюкозы и фруктозы. Содержащаяся в молоке лактоза под влиянием фермента лактазы расщепляется на глюкозу и галактозу. Образующиеся моносахара (глюкоза, фруктоза и галактоза) всасываются энтероцитами и поступают в кровь. Полисахариды и дисахариды (мальтоза, сахароза, лактоза), которые не подвергались расщеплению в полости кишки, гидролизуются на поверхности энтероцитов в процессе пристеночного и мембранного пищеварения. Для всасывания простых Сахаров необходимы ионы Na+, которые образуют комплекс с углеводами и поступают внутрь клетки, где комплекс распадается и Na+ транспортируется обратно. Процесс обеспечивается энергией за счет АТФ. Более 90% всосавшихся моносахаридов поступает в гемокапилляры и далее в печень, остальные — в лимфокапилляры и далее в венозную систему. Всасывание белков у новорожденных происходит с помощью пиноцитоза. Пиноцитозные пузырьки формируются между основаниями микроворсинок, транспортируются к латеральным стенкам (плазмолеммам) энтероцитов и путем экзоцитоза выделяются в межэпителиальное пространство и далее в сосуды. Таким способом всасываются из материнского молока γ-глобулины, обеспечивающие иммунную защиту новорожденного. У взрослых расщепление белков начинается в желудке, а далее продолжается в тонком кишечнике до образования аминокислот, которые всасываются. В кишечном соке содержатся ферменты поджелудочной железы — протеиназы (трипсин, химотрипсин, коллагеназа) и пептидазы (карбоксипептидаза, эластаза), собственные ферменты кишечника — энтерокиназа (гликопротеид, синтезируемый в двенадцатиперстной кишке) и ряд пептидаз (аминопептидаза, лейцинаминопептидаза, трипептидазы, дипептидазы и др.). Ферменты поджелудочной железы (трипсин, химотрипсин, эластаза) вырабатываются в неактивной форме и становятся активными в тонкой кишке. Например, трипсиноген (неактивная форма) превращается в трипсин под влиянием энтерокиназы, которая вырабатывается в кишечнике также в неактивной форме — в виде киназогена, активизирующегося под влиянием трипсина и ряда пептидаз. Трипсин гидролизует пептиды. Химотрипсин также активируется в кишечнике и гидролизует не только пептиды, но и ряд веществ, в которых содержатся группы с ароматическими аминокислотами — фенилаланином, тирозином, триптофаном.

 

Эластаза вырабатывается в форме проэластазы, которая в кишке активизируется и действует на эластин; карбоксипептидазы синтезируются в неактивной форме в поджелудочной железе, а в кишечнике активизируются; аминопептидазы синтезируются в неактивной форме в кишечнике, активируются трипсином. Таким образом, под воздействием трипсина и химотрипсина образуются различной длины пептиды и некоторое количество аминокислот, под воздействием пептидазы обеспечивается дальнейший гидролиз пептидов до дипептидов и свободных аминокислот, под воздействием дипептидазы завершается расщепление дипептидов до аминокислот.

Всасывание свободных аминокислот и их транспортировка осуществляются через энтероциты. Энергия для транспорта поставляется за счет биохимических реакций (например, за счет энергии движения Na+). Через эпителий кишки происходит также всасывание воды с растворенными в ней минеральными веществами, витаминов и некоторых других веществ.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.011 сек.)