|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
БИЛЕТ № 36
1.Гаструляция: способы, фазы, хронология, зародышевые листки. 2.Покровные эпителии: топография, морфофункциональная и гистогенетическая классификация. Типы и способы регенерации покровного эпителия. З.Гипоталамус: нейросекреторные отделы, их ядра, нейросекреторные клетки, гормоны, связь с гипофизом. Гаструляция — сложный процесс морфогенетических изменений, сопровождающийся размножением, ростом, направленным перемещением и дифференцировкой клеток, в результате чего образуются зародышевые листки (эктодерма, мезодерма и энтодерма) — источники зачатков тканей и органов. В эмбриобласте на 6—7 сутки после оплодотворения протекает I фаза гаструляции. У человека гаструляция осуществляется 2-я процессами: деляминацией и иммиграцией. Эмбриобласт расслаивается на эпибласт — слой цилиндрических клеток, ограничивающий вместе с трофобластом полость амниона, и гипобласт — слой кубических клеток, обращенных к бластоцелю. Эпибласт и гипобласт вместе образуют двухслойный зародышевый диск или щиток. Из зародышевого щитка в полость бластоцисты выселяются клетки внезародышевой паренхимы, часть из этих клеток оттесняется к цитотрофобласту, при этом образуется хорион. В дальнейшем на месте двухслойного зародышевого диска путем его инвагинации, миграции и пролиферации клеток развиваются первичные зародышевые листки: эктодерма, мезодерма и энтодерма. Из эктодермы образуются: 5. кожный эпителий, 6. нервная система, 7. органы чувств, 8. передний и задний отделы кишечной трубки. У позвоночных из энтодермы развивается слизистая оболочка всего кишечника и связанные с ним железы (печень, поджелудочная железа и др.). Морфологическая классификация покровных эпителиев: · однослойный плоский эпителий (эндотелий — выстилает все сосуды; мезотелий — выстилает естественные полости человека: плевральную, брюшную, перикардиальную); · однослойный кубический эпителий — эпителий почечных канальцев; · однослойный однорядный цилиндрический эпителий — ядра располагаются на одном уровне; · однослойный многорядный цилиндрический эпителий — ядра располагаются на разных уровнях (легочный эпителий); · многослойный плоский ороговевающий эпителий — кожа; · многослойный плоский неороговевающий эпителий — полость рта, пищевод, влагалище; · переходный эпителий — форма клеток этого эпителия зависит от функционального состояния органа, например, мочевой пузырь. Генетическая классификация эпителиев: · эпидермальный тип, развивается из эктодермы — многослойный и многорядный эпителий, выполняет защитную функцию; · энтеродермальный тип, развивается из энтодермы — однослойный цилиндрический эпителий, осуществляет процесс всасывания веществ; · целонефродермальный тип — развивается из мезодермы — однослойный плоский эпителий, выполняет барьерную и экскреторную функции; · эпендимоглиальный тип, развивается из нейроэктодермы, выстилает полости головного и спинного мозга; · ангиодермальный тип — эндотелий сосудов, развивается из мезенхимы. Гипоталамус является центром регуляции вегетативных функций и высшим эндокринным центром. Он оказывает трансаденогипофизарное влияние (через стимуляцию выработки гипофизом тропных гормонов) на аденогипофиззависмые эндокринные железы. Гипоталамус осуществляет контроль за всеми висцеральными функциями организма, объединяет нервные и эндокринные механизмы регуляции. Гипоталамус занимает базальную часть промежуточного мозга — находится под зрительным бугром (таламусом), образуя дно 3 желудочка. Полость 3 желудочка продолжается в воронку, направленную в строну гипофиза. Стенка этой воронки называется гипофизарной ножкой. Ее дистальный конец продолжается в заднюю долю гипофиза (нейрогипофиз). Передний гипоталамус содержит наиболее крупные парные супраоптические и паравентрикулярные ядра, а также ряд других ядер. Супраоптические ядра образованы в основном крупными пептидхолинергическими нейронами. Аксоны пептидхолинергических нейронов идут через гипофизарную ножку в заднюю долю гипофиза и образуют синапсы на кровеносных сосудах — аксовазальные синапсы. Нейроны супраоптических ядер секретируют в основном антидиуретический гормон или вазопресин. Паравентрикулярные ядра наряду с крупными пептидхолинергическими нейронами содержат также мелкие пептидадренергические. Первые вырабатывают гормон окситоцин, который поступает по аксонам в тельца Геринга задней доли гипофиза. Окситоцин вызывает синхронное сокращение мускулатуры матки во время родов и активирует миоэпителиоциты молочной железы, что усиливает выделение молока во время кормления ребенка. Средний гипоталамус содержит ряд ядер состоящих из мелких нейросекреторных пептидадренергических нейронов. Наиболее важны аркуатное и вентромедиальное ядра, образующие так называемый аркуатно-медиобазальный комплекс. Нейросекреторные клетки этих ядер вырабатывают аденогипофизотропные гормоны, регулирующие функцию аденогипофизарилизинг-гормоны. Гипофизотропные рилизинг—гормоны являются олигопептидами и подразделяются на две группы: либерины, усиливающие секрецию гормонов аденогипофизом, и статины, тормозящие ее. Из либеринов выделены гонадолиберин, кортиколиберин, соматолиберин. В то же время, описаны только два статина: соматостатин, который подавляет синтез гипофизом гормона роста, адренокортикотропина и тиреотропина, и пролактиностатин. Задний гипоталамус включает маммилярные тела и перифорникальное ядро. Этот отдел не относится к эндокринному, он регулирует содержание глюкозы и ряд поведенческих реакций.
БИЛЕТ №37 1.Периоды индивидуального развития. Критические периоды онтогенеза: сущность, влияние экологических и социальных факторов. 2.Поперечнополосатая скелетная мышечная ткань: структурно-функциональная единица, ее строение, развитие, типы, иннервация, структурные основы сокращения. Мышца как орган. З. Печень: тканевой состав, источники развития, структурно-функциональные единицы, особенности кровоснабжения. Строение классической дольки. Регенерация. Возрастные особенности. Строение и функциональная роль желчного пузыря. В зависимости от среды, в которой происходит развитие организма человека, онтогенез распадается на два больших периода, отделенных друг от друга моментом рождения:
В процессе индивидуального развития имеются критические периоды, когда повышена чувствительность развивающегося организма к воздействию повреждающих факторов внешней и внутренней среды. Выделяют несколько критических периодов развития. Такими наиболее опасными периодами являются: 1) время развития половых клеток - овогенез и сперматогенез; 2) момент слияния половых клеток - оплодотворение; 3) имплантация зародыша (4-8-е сутки эмбриогенеза); 4) формирование зачатков осевых органов (головного и спинного мозга, позвоночного столба, первичной кишки) и формирование плаценты (3-8-я неделя развития); 5) стадия усиленного роста головного мозга (15-20-я неделя); 6) формирование функциональных систем организма и дифференцирование мочеполового аппарата (20-24-я неделя пренатального периода); 7) момент рождения ребенка и период новорожденности - переход к внеутробной жизни; метаболическая и функциональная адаптация; 8) период раннего и первого детства (2 года - 7 лет), когда заканчивается формирование взаимосвязей между органами, системами и аппаратами органов; 9) подростковый возраст (период полового созревания - у мальчиков с 13 до 16 лет, у девочек - с 12 до 15 лет). Сердечная поперечнополосатая мышечная ткань. Структурно-функциональной единицей является клетка — кардиомиоцит. По строению и функциям кардиомиоциты подразделяются на две основные группы: · типичные или сократительные кардиомиоциты, образующие своей совокупностью миокард; · атипичные кардиомиоциты, составляющие проводящую систему сердца и подразделяющиеся в свою очередь на три разновидности. Сократительный кардиомиоцит представляет собой почти прямоугольную клетку 50—120 мкм в длину, шириной 15—20 мкм, в центре которой локализуется обычно одно ядро. Покрыт снаружи базальной пластинкой. В саркоплазме кардиомиоцита по периферии от ядра располагаются миофибриллы, а между ними и около ядра локализуются в большом количестве митохондрии. Саркоплазматическая сеть, охватывающая миофибриллы, представлена расширенными анастомозирующими канальцами. Вторая разновидность кардиомиоцитов — атипичные кардиомиоциты образуют проводящую систему сердца, состоящую из: · синусо-предсердный узел; · предсердно-желудочковый узел; · предсердно-желудочковый пучок (пучок Гиса) ствол, правую и левую ножки; · концевые разветвления ножек — волокна Пуркинье. Атипичные кардиомиоциты обеспечивают генерирование биопотенциалов, их проведение и передачу на сократительные кардиомиоциты. По своей морфологии атипичные кардиомиоциты отличаются от типичным рядом особенностей: · они крупнее (длина 100 мкм, толщина 50 мкм); · в цитоплазме содержимся мало миофибрилл, которые расположены неупорядочено и потому атипичные кардиомиоциты не имеют поперечной исчерченности; · плазмолемма не образует Т-канальцев; · во вставочных дисках между этими клетками отсутствуют десмосомы и щелевидные контакты. Атипичные кардиомиоциты различных отделов проводящей системы отличаются между собой по структуре и функциям и подразделяются на три основные разновидности: · Р-клетки (пейсмекеры) водители ритма (I типа); · переходные клетки (II типа); · клетки пучка Гиса и волокон Пуркинье (III тип). Иннервация сердечной мышечной ткани. Биопотенциалы сократительные кардиомиоциты получают из двух источников: · из проводящей системы сердца (прежде всего из синусо-предсердного узла); · из вегетативной нервной системы (из ее симпатической и парасимпатической части). Регенерация сердечной мышечной ткани. Кардиомиоциты регенерируют только по внутриклеточному типу. Пролиферации кардиомиоцитов не наблюдается. Камбиальные элементы в сердечной мышечной ткани отсутствуют. При поражении значительных участков миокарда (в частности, при инфаркте миокарда) восстановление дефекта происходит за счет разрастания соединительной ткани и образования рубцов (пластическая регенерация). Естественно, что сократительная функция в этих участках отсутствует. Поражение проводящей системы сопровождается нарушением ритма сердечных сокращений. Функции печени: · депонирование, в печени депонируется гликоген, жирорастворимые витамины (А, D, Е, К). Сосудистая система печени способна в довольно больших количествах депонировать кровь; · участие во всех видах обмена веществ: белковом, липидном (в том числе в обмене холестерина), углеводном, пигментном, минеральном и др. · дезинтоксикационная функция; · барьерно-защитная функция; · синтез белков крови: фибриногена, протромбина, альбуминов; · участие в регуляции свертывания крови путем образования белков — фибриногена и протромбина; · секреторная функция — образование желчи; · гомеостатическая функция, печень участвует в регуляции метаболического, антигенного и температурного гомеостаза организма; · кроветворная функция; · эндокринная функция. Печень — паренхиматозный дольчатый орган. Ее строма представлена: · капсулой из плотной волокнистой соединительной ткани (капсула Глиссона), которая срастается с висцеральным листком брюшины; · прослойками рыхлой волокнистой соединительной ткани, которые делят орган на дольки. Паренхима печени представлена совокупностью гепатоцитов, формирующих классическую дольку. Классическая долька — структурно-функциональная единица печени. Она имеет форму шестигранной призмы. По периферии дольки находятся триады или портальные тракты, в состав которых входят междольковые артерия, вена и желчный проток, а также лимфососуды и нервные стволы (в силу этого некоторые исследователи предлагают называть эти структуры не триадами, а пентодами). В центре дольки лежит центральная вена безмышечного типа. Печень получает кровь из двух сосудистых систем: печеночной артерии и воротной вены. По печеночной артерии в печень поступает около 20 % всей крови. Она доставляет органу кислород. Из системы воротной вены печень получает до 80 % крови. Это кровь от непарных органов брюшной полости (кишечника, селезенки, поджелудочной железы), богатая питательными веществами, гормонами, биологически активными веществами, антителами и веществами, подлежащими детоксикации. Функции желчного пузыря: · депонирование желчи; · концентрирование желчи путем всасывания ее жидкого компонента; · секреция слизи. Желчный пузырь слоистый орган, состоящий из слизистой, мышечной и серозной (адвентициальной) оболочек. Слизистая оболочка образована однослойным призматическим эпителием и собственной пластинкой из рыхлой волокнистой соединительной ткани. Эпителиоциты, являясь секреторными клетками, образуют и выделяют на поверхность эпителия слизь, защищающую его от агрессивных компонентов желчи. В связи с этим в клетках обнаруживаются секреторные гранулы. Апикальная цитолемма формирует многочисленные микроворсинки. Цитолемма латеральной поверхности эпителиоцитов содержит большое количество натриевых насосов, благодаря деятельности которых создается градиент натрия и калия между межклеточными пространствами и просветом пузыря. Это обеспечивает пассивный транспорт воды из пузырной желчи в межклеточные пространства и далее в гемокапилляры, что ведет к концентрированию желчи. Слизистая оболочка образует множество складок. В области шейки пузыря в собственной пластинке лежат альвеолярно-трубчатые железы, вырабатывающие слизь. Подслизистая оболочка отсутствует. Мышечная оболочка представлена пучками гладких миоцитов, формирующими два нерезких слоя (внутренний циркулярный и наружный продольный). Циркулярные пучки миоцитов преобладают. Наружная оболочка со стороны печени адвентициальная, со стороны брюшной полости серозная. БИЛЕТ № 38 1.Включения: определения, классификация, значение. Гиалоплазма: физико - химические свойства и значение в жизнедеятельности клеток. 2.Нервные окончания: определение, функциональная классификация. Морфологическая классификация рецепторов. Строение эффекторного окончания (моторной бляшки). 3.Женская половая система: источники развития, органы, тканевой состав, функции. Яичник: строение, функции, циклические изменения и их регуляция. Овогенез: периоды, их сущность, регуляция, гемато-фолликулярный барьер. Включения — непостоянные структурные компоненты цитоплазмы. В процессе жизнедеятельности в некоторых клетках накапливаются случайные включения: · медикаментозные, · частички угля, · кремния и так далее. Трофические включения — лецитин в яйцеклетках, гликоген, липиды, имеются почти во всех клетках. Секреторные включения — секреторные гранулы в секретирующих клетках (зимогенные гранулы в ацинозных клетках поджелудочной железы, секреторные гранулы в эндокринных железах и другие). Экскреторные включения — вещества, подлежащие удалению из организма (например, гранулы мочевой кислоты в эпителии почечных канальцев). Пигментные включения — меланин, гемоглобин, липофусцин, билирубин и другие. Эти включения имеют определенный цвет и придают окраску всей клетке (меланин — черный или коричневый, гемоглобин — желто-красный и так далее). Необходимо отметить, что пигментные включения характерны только для определенных типов клеток (меланин содержится в меланоцитах, гемоглобин — в эритроцитах). Однако, липофусцин может накапливаться во многих типах клеток обычно при их старении. Его наличие в клетках свидетельствует о их старении и функциональной неполноценности. Все нервные волокна заканчиваются концевыми аппаратами, которые получили название нервные окончания. По функциональному значению нервные окончания можно разделить на три группы: · эффекторные (эффекторы); · рецепторные (аффекторные или чувствительные); · концевые аппараты, образующие межнейронные синапсы, осуществляющие связь нейронов между собой. Эффекторные нервные окончания представлены двумя типами — двигательные и секреторные. Двигательные нервные окончания — это концевые аппараты аксонов двигательных клеток соматической или вегетативной нервной системы. При их участии нервный импульс передается на ткани рабочих органов. Секреторные нервные окончания имеют простое строение и заканчиваются на железе. Они представляют собой концевые утолщения, или четковидные расширения волокна с синаптическими пузырьками, содержащими главным образом ацетилхолин. Рецепторные нервные окончания. Главная функция афферентных нервных окончаний является восприятие сигналов поступающих из внешней и внутренней среды. Рецептор — это терминальное ветвление дендрита чувствительной (рецепторной) нервной клетки. Классификация рецепторов: I. По происхождению: · Нейросенсорные — нейральный источник происхождения, представляют собой рецепторы нервных клеток — первичночувствительные; · Сенсоэпителиальные — имеют не нейральное происхождение, представлены специальными клетками которые способны воспринимать раздражение — вторичночувствительные, например: инкапсулированные и неинкапсулированные нервные окончания. II. По локализации: · экстерорецепторы; · интерорецепторы; · проприорецепторы. III. По морфологии: · свободные; · несвободные (инкапсулированные: пластинчатые тельца Фатера-Пачини, осязательные тельца Мейснера, концевые колбы Краузе, сухожильные органы Гольджи; неинкапсулированные); IV. По специфичности восприятия (по модальности): · терморецепторы; · барорецепторы; · хеморецепторы; · механорецепторы; · болевые рецепторы; V. По количеству воспринимающих раздражителей: · мономодальные; · полимодальные. Женская половая система обеспечивает не только образование половых клеток и синтез гормонов, но и вынашивание и вскармливание потомства. В связи с этим она устроена несколько сложнее и имеет более тонкие и сложные механизмы регуляции, нарушение которых чаще приводит к патологии. После индифферентной стадии на 4-ой неделе внутриутробного развития и после образования половых валиков, половые шнуры, содержащие эпителиальные клетки половых валиков и гонобласты желточного мешка внедряются в строму первичной почки. Яичники выполняют две основные функции: генеративную (образование женских половых клеток — яйцеклеток) и эндокринную — вырабатывают женские и мужские половые гормоны, а также ряд других гормонов и биологически активных веществ, регулирующих собственные функции яичников (внутрисистемный уровень регуляции). Его строму составляют белочная оболочка из плотной волокнистой соединительной ткани и рыхлая волокнистая соединительная ткань коркового и мозгового вещества, в клеточном составе которого преобладают фибробласты и фиброциты. Снаружи от белочной оболочки находится видоизмененный мезотелий серозной оболочки. Который обладает высокой пролиферативной активностью и очень часто является источником развития опухолей яичника. Паренхима яичника представлена совокупностью фолликулов и желтых тел, находящихся на разных стадиях развития. Яичник разделен на корковое и мозговое вещество. В корковом веществе находятся премордиальные, первичные, вторичные, третичные (пузырчатые) и атретические фолликулы, желтые и белые тела. Мозговое вещество образовано, рыхлой волокнистой соединительной тканью, в которой находятся кровеносные сосуды, нервный аппарат, а также могут встречаться эпителиальные тяжи, представляющие собой остатки мезонефроса. Они могут быть источником развития кист яичника. БИЛЕТ №39 1. Прогенез: морфофункциональная характеристика половых клеток; понятие о спермато - и овогенезе. 2.Гладкая мышечная ткань: источники развития, классификация, функциональная единица, строение, иннервация, регенерация, структурные основы сокращения. 3. Почки: этапы развития, тканевой состав, строение, особенности кровоснабжения. Нефрон: составные части, гистофизиология, типы нефронов. ЮГА почки. Зрелые половые клетки, в отличие от соматических содержат одиночный набор хромосом. В мужских половых клетках у млекопитающих содержатся половые хромосомы либо X, либо Y, в женских половых клетках — только хромосома Х, Дифференцированные гаметы обладают невысоким уровнем метаболизма и неспособны к размножению. Прогенез включает в себя сперматогенез и овогенез. Сперматогенез — это развитие и формирование мужских половых клеток. Сперматогенез протекает в извитых канальцах семенников, и его средняя продолжительность от 68 до 75 суток. Сперматогенез у человека начинается с момента полового созревания и продолжается в течение всего активного полового периода в больших количествах. Стадии сперматогенеза. Начальной фазой сперматогенеза является размножение сперматогоний путем митоза, большая часть клеток продолжает делиться, а меньшая часть вступает в стадию роста. В этот период клетки растут, накапливают питательные вещества, и потом превращаются в сперматоциты 1-го порядка. Следующая фаза созревание -деление, характеризуется двумя редукционными делениями, без интерфазы. В результате 1-го деления 1 сперматоцит 1-го порядка дает начало 2-м сперматоцитам2-го порядка, а 2-ое деление-созревание приводит к появлению 4 сперматид. Фаза формирования происходит в присутствии тестостерона, происходит преобразование сперматид в сперматозоиды. Овогенез — это процесс образования и развития женских половых клеток. Он включает в себя 3 фазы: · размножения; · роста; · созревания. Фаза размножения начинается в эмбриональном периоде и продолжается в течение 1-го года жизни девочки. К моменту рождения у девочки имеется около 2-х млн. клеток. Сущностью фазы размножения является митотическое деление овогоний. Фаза роста, в конце 1-го года жизни девочки размножение овогоний останавливается, и клетки яичника вступают в фазу малого роста, превращаясь в овоциты 1-го порядка. Наступает 1 блок роста, который снимается с наступлением полового созревания, то есть появлением женских половых гормонов. Далее овоциты 1-го порядка вступают в фазу большого роста. Фаза созревания, как и во время сперматогенеза, включает в себя два деления, причем второе следует за первым без интеркинеза, что приводит к уменьшению (редукции) числа хромосом вдвое. При первом делении созревания овоцит 1-го порядка делится, в результате чего образуются овоцит 2-го порядка и небольшое редукционное тельце. Подавляющая часть гладкой мышечной ткани организма (внутренних органов и сосудов) имеет мезенхимальное происхождение. Структурно-функциональной единицей гладкой мышечной ткани внутренних органов и сосудов является миоцит. Представляет собой чаще всего веретенообразную клетку (длиной 20—500 мкм, диаметром 5—8 мкм), покрытую снаружи базальной пластинкой, но встречаются и отростчатые миоциты. В центре располагается вытянутое ядро, по полюсам которого локализуются общие органеллы: зернистая эндоплазматическая сеть, пластинчатый комплекс, митохондрии, цитоцентр. Механизм сокращения в миоцитах в принципе сходен с сокращением саркомеров в миофибриллах в скелетных мышечных волокнах. Он осуществляется за счет взаимодействия и скольжения актиновых миофиламентов вдоль миозиновых. Миоциты окружены снаружи рыхлой волокнистой соединительной тканью — эндомизием и связаны друг с другом боковыми поверхностями. При этом, в области тесного контакта соседних миоцитов базальные пластинки прерываются. Миоциты соприкасаются непосредственно плазмолеммами и в этих местах имеются щелевидные контакты, через которые осуществляется ионная связь и передача биопотенциала с одного миоцита на другой, что приводит к одновременному и содружественному их сокращению. В эндомизии проходят кровеносные капилляры, обеспечивающие трофику миоцитов, а в прослойках соединительной ткани между пучками и слоями миоцитов в перимизии проходят более крупные сосуды и нервы, а также сосудистые и нервные сплетения. Регенерация гладкой мышечной ткани осуществляется несколькими способами: · посредством внутриклеточной регенерации гипертрофии при усилении функциональной нагрузки; · посредством митотического деления миоцитов при их повреждении (репаративная регенерация); · посредством дифференцировки из камбиальных элементов — из адвентициальных клеток и миофибробластов. Функции почек: · мочеобразование и мочевыделение, заключается в образовании мочи путем фильтрации плазмы крови и реабсорбции обратно в кровь полезных для организма продуктов обмена. С образующейся в почках мочой выделяются конечные продукты азотистого обмена и ксенобиотики: токсические, лекарственные вещества и другие; · поддержание кислотно-щелочного гомеостаза; · регуляция водно-солевого обмена; · регуляция артериального давления; · эндокринная функция и синтез биологически активных веществ — выработка ренина, эритропоэтина, эритрогенина, простагландинов, биогенных аминов, витамина D3 (кальцитрола), калликреина, ряда интерлейкинов; · участие в обмене веществ, в первую очередь, в обмене белков и углеводов; · участие в работе свертывающей противосвертывающей системы заключающейся в выработке урокиназы (активатора плазминогена, фактора фибринолиза), фактора активации тромбоцитов. Развитие почек начинается на первом месяце эмбриогенеза и продолжается после рождения. Источником развития является промежуточная мезодерма — нефротом. В развитии почек выделяют три стадии: 1. Пронефрос развивается из 8—10 передних сегментов нефротома. 2. На втором месяце эмбриогенеза из 25 пар сегментов нефротома начинает развиваться первичная почка — мезонефрос. 3. Метанефрос ( окончательная почка) начинает формироваться на 2-м месяце эмбриогенеза, а к 5-му — уже функционирует. Почка является паренхиматозным зональным органом. Снаружи она покрыта капсулой из плотной волокнистой соединительной ткани и серозной оболочки. От капсулы отходят прослойки рыхлой волокнистой неоформленной соединительной ткани, по которым идут сосуды. Корковое вещество занимает наружную, поверхностную часть почки и мозговыми лучами Феррейна разделяется на отдельные участки. Участки коркового вещества своей нижней частью внедряются между основаниями мозговых пирамид в мозговое вещество в виде колонок Бертини, отделяя пирамиды друг от друга. Мозговое вещество образовано мозговыми пирамидами. Их широкие основания повернуты в сторону коркового вещества, вершины пирамид называются сосочками. Они обращены к малым чашечкам, которые далее продолжаются в большие чашечки и затем в почечную лоханку. Гистофизиология нефрона. Структурно-функциональной единицей почки является нефрон. Он состоит из капсулы и переходящих друг в друга канальцев проксимальных извитого и прямого, дистальных извитого и прямого. В каждой почке около 2 млн. нефронов. По локализации различают: · суперфициальные или подкапсульные (около 1 %); · корковые (85 %); · юкстамедуллярные, или околомозговые (около 14 %). В нефроне выделяют: · капсулу (вместе с сосудистым клубочком формирует почечное тельце Мальпиги); · проксимальный извитой отдел; · проксимальный прямой отдел; · тонкий отдел; · дистальный извитой отдел; · дистальный прямой отдел. В состав коркового вещества входят следующие структуры: · почечные тельца Мальпиги; · проксимальные извитые канальцы; · дистальные извитые канальцы. В корковом веществе залегают также компоненты юкстагломерулярного аппарата. В мозговом веществе находятся: проксимальные прямые канальцы, тонкие канальцы, дистальные прямые канальцы, а также в мозговом веществе находятся собирательные трубочки. Юкстагломерулярные нефроны имеют очень длинный тонкий сегмент, который состоит из нисходящей и восходящей частей (петля Генле). Они глубоко спускаются в мозговое вещество, в котором лежат также прямые проксимальные и прямые дистальные канальцы. Капсула нефрона, имеющая вид двустенной чаши, и входящие в нее капилляры первичной капиллярной сети образуют почечное тельце Мальпиги. Проксимальный каналец выполняет следующие функции: · облигатное (обязательное) обратное всасывание из первичной мочи в кровь белков и глюкозы; · факультативное всасывание воды и минеральных веществ; · секреция некоторых органических кислот и оснований; · экскреция некоторых экзогенных веществ; · биосинтез кальцитриола. Тонкий отдел нефрона. В корковых нефронах этот отдел имеет нисходящую часть и залегает в основном в мозговых лучах и наружных отделах мозгового вещества, тогда как в юкстагломерулярных нефронах в нем имеются нисходящая и восходящая части. Тонкий отдел участвует в формировании петли Генле. Его стенка выстлана плоскими клетками, которые имеют глубокие складки цитолеммы. Функции: · пассивная реабсорбция воды из первичной мочи; · в восходящей части тонкого отдела юкстагломерулярных нефронов, напротив, непроницаемая для воды, помимо этого происходит диффузия солей. Дистальный отдел делится на дистальный прямой и дистальный извитой канальцы. Дистальный прямой каналец образует восходящее колено петли и входит в состав мозгового вещества и мозговых лучей. Дистальный извитой каналец, многократно извиваясь в корковом веществе, подходит к почечному тельцу, образуя плотное пятно, а затем впадает в собирательную трубку. Дистальный отдел имеет хорошо выраженный просвет, образован кубическими или цилиндрическими клетками. Функции: · в дистальном отделе происходит дополнительная реабсорбция электролитов из мочи. Эти процессы идут активно, то есть против градиента концентрации, с затратой энергии; · в клетках дистального отдела синтезируется калликреин. Кровоснабжение почки. Сосуды почки имеют характерную архитектонику в связи с наличием двух основных видов нефронов:корковых и юкстамедуллярных. Кровь поступает в почку через почечную артерию, которая делится на междолевые ветви, достигающие границы коркового и мозгового вещества. Здесь междолевые артерии разделяются на несколько стволов, идущих параллельно указанной границе. В составе юкстагломерулярного аппарата выделяют следующие виды клеток: 1. юкстагломерулярные клетки — это клетки средней оболочки приносящей и выносящей артериол, по происхождению мышечные, по функции секреторные. Они содержат белоксинтезирующий аппарат и гранулы ренина.. 2. Клетки плотного пятна — это клетки в количестве 20—40 находятся в участке стенки дистального канальца, лежащего между приносящей и выносящей артериолами. Базальная мембрана в этом месте очень тонкая или полностью отсутствует. 3. Юкставаскулярные клетки лежат в треугольном пространстве между приносящей, выносящей артериолами и клетками плотного пятна, формируя так называемую подушку. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.021 сек.) |