|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
структуры фильтрованных слоевДля очистки воды от механических примесей в промышленных условиях используются главным образом зернистые «сыпучие» материалы. Основным требованием, которое предъявляется к таким материалам; является их устойчивость в обрабатываемой воде. Материал не должен загрязнять воду, поскольку любое даже незначительное загрязнение ее обязательно приведет к увеличению стоимости водоочистки. Фильтрующий материал также должен быть дешев и легко доступен. Понятие загрязнения является неотъемлемой характеристикой очищенной воды и для каждой технологической схемы очистки индивидуально. Так, для воды, которая в процессе очистки не освобождается от соединений кремния, содержание последних в ней не является загрязнением. Такую воду очищать от механических примесей удобнее всего с помощью кварцевого песка или керамической крошки. Эти материалы дешевы, легкодоступны, однако при контакте с водой способны обогащать ее оксидами кремния, и поэтому для очистки воды, из которой далее практически полностью удаляются неорганические примеси, они не приемлемы. В этом случае применяются более стойкие, но и более дорогие материалы: дробленый антрацит, сульфоуголь, технический фильтрперлит, зерненый сополимер дивинилбензола и стирола. Применение зернистых материалов для удаления механических примесей при организации многотоннажных производств очищенной воды вызвано особенностью построения их слоя, в котором частицы материала чередуются с пустотами, называемыми обычно порами слоя, соединяясь между собой, поры слоя образуют поровые каналы, по которым протекает очищаемая вода. От формы, размеров и количества таких каналов в единице объема слоя будет зависеть не только гидравлический режим течения воды, но и качество ее очистки. Именно поэтому рассмотрение общих положений теории фильтрования в зернистых слоях удобнее всего начать с геометрической характеристики этих слоев. Детальное описание геометрии зернистого слоя из-за сложности обычно не используется, и на практике зернистый слой рассматривают усредненно как однородную изотропную среду, характеризуемую следующими обобщенными понятиями (табл. 5.1).
Таблица 5.1 Геометрические характеристики некоторых фильтрующих материалов
В качестве фильтрующих материалов на котельных и ТЭС в основном используется кварцевый песок, дробленый антрацит, сульфоуголь, катионит КУ-2, целлюлоза, перлит и т.д. В настоящее время предложены и испытаны новые фильтрующие материалы, обладающие повышенной емкостью поглощения и эффективностью очистки воды: керамзит, вулканические шлаки, горелые породы, шунгизит и др. Для очистки воды от ГДП успешно применяют плавающие загрузки из гранул вспененного полистирола, газонаполненных гранул керамзита и др. Однако из всех упомянутых фильтрующих материалов наибольшее распространение в производстве добавочной воды на ТЭС и АЭС получил антрацит. Он достаточно дешев, а главное химически стоек. При контакте частиц антрацита с фильтруемой водой прирост в ней кремниевой кислоты не превышает примерно В технологических схемах очистки конденсата используют чаще всего сульфоуголь или катионит КУ-2. Итак, все применяемые фильтрующие материалы должны удовлетворять следующим требованиям: обладать высокой механической прочностью, химической стойкостью, правильно подобранным фракционным составом, по возможности большим коэффициентом формы, так как слой из гладких окатанных зерен фильтрует плохо. Осветлительные фильтры можно классифицировать по следующим признакам: фракционному составу фильтрующего материала – насыпные и намывные; давлению – открытые и напорные; количеству фильтрующих слоев – однослойные и многослойные; числу параллельно работающих камер – однокамерные и многокамерные; способу фильтрования – однопоточные и двухпоточные. В схемах ВПУ котельных и ТЭС применяются в основном насыпные напорные однопоточные однокамерные фильтры с числом фильтрующих слоев от одного до двух, а также весьма перспективные напорные двухкамерные фильтры. Применение последних позволяет существенно сократить расход металла и площадь, необходимую для установки. Напорный однопоточный фильтр (рис.5.1) состоит из цилиндрического корпуса с приваренными к нему сферическими днищами. Внутри фильтра расположены слой фильтрующего материала и дренажно-распределительные устройства, необходимые для равномерного распределения и сбора воды по всей площади поперечного сечения фильтра. Верхнее дренажное устройство чаще всего оформляется в виде отбойного щита, гасящего энергию потока воды, а нижнее расположено на слое кислотоупорного бетона, заливаемого на нижнее днище фильтра, и выполнено в виде трубной системы, состоящей из коллектора с боковыми ответвлениями, снабженными для отвода воды специальными колпачками или щелевыми устройствами. Высота фильтрующего материала, загруженного в фильтр, составляет около одного метра. Часть полости фильтра остается свободной. Это необходимо для выравнивания скорости воды, поступающей на фильтрующий слой, и для возможности расширения слоя при его взрыхлении. На ВПУ большой производительности для снижения площади, занимаемой механическими фильтрами и экономии металла применяют трех- и двухкамерные фильтры. Камеры в этих фильтрах работают параллельно.
Рис. 5.1. Принципиальная схема вертикального однопоточного механического фильтра: 1 – распределительное устройство; 2 – бетон; 3 – фильтрующий материал; 4 – водяная подушка; 5 – распределительное устройство; 6 – воздушник; 7 – подвод исходной воды и отвод промывной воды; 8 – выход осветлённой и подвод промывной воды; 9 – сжатый воздух
Режим эксплуатации механических адгезионных фильтров заключается в обеспечении постоянства расхода воды, своевременном отключении на промывку и промывке. В эксплуатационных условиях фильтр часто отключают по достижении определенного перепада давления (примерно 0,2 МПа). Промывку фильтра от удержанной примеси ведут в течение 20 мин в направлении противоположном направлению воды. При промывке слой расширяется на 30–50 % и вследствие трения зерен между собой освобождается от удержанной примеси, которая с потоком воды выбрасывается из фильтра. В настоящее время промывочную воду направляют в осветлители. Расход промывочной воды определяется по формуле:
где Fф – площадь поперечного сечения фильтра, м2; iПРОМ – интенсивность промывки, составляющая в зависимости от размера фракций и высоты слоя от 12 до 15 кг/(с×м2). Для интенсификации процесса промывки под слой подают сжатый воздух, что одновременно позволяет ускорять процесс промывки и сокращать расход промывочной воды. Промывку механических фильтров проводят осветленной водой, поэтому емкость баков осветленной воды должна учитывать кроме часового запаса также и объем воды, необходимой для промывки одного фильтра. При расчете фильтрованной части предочистки следует иметь в виду, что на ВПУ с осветлителями количество устанавливаемых механических фильтров выбирается из расчета скорости фильтрования 10 м/ч, а при прямоточной коагуляции – 5 м/ч. При этом необходимо предусматривать установку не менее трех фильтров (два в работе, один в регенерации), а также еще одного фильтра для перезагрузки фильтрующего материала при ремонте или осмотрах основных фильтров. 8.1. Обратный осмос Принцип обратного осмоса основан на явлении осмоса – самопроизвольного перехода растворителя через полупроницаемую мембрану в раствор. Если чистую воду и водный раствор какого-либо вещества поместить в два отсека по обе стороны полупроницаемой мембраны, способной пропускать только молекулы воды, то в такой системе будет наблюдаться следующее. Из-за разности давления (концентраций) молекул (Н2О) в разных отсеках осуществляется переход молекул воды в объем с их меньшей концентрацией, т.е. в отсек концентрированного раствора. Объем раствора при этом постепенно увеличивается, сам раствор разбавляется, ∆р уменьшается, тормозя дальнейший перенос молекул Н2О. Количественно процесс осмоса характеризуется значением осмотического давления р, которое согласно закону Вант-Гоффа прямопропорционально концентрации растворенного вещества С и абсолютной температуре Т раствора:
где i = (1 + α) – коэффициент Вант-Гоффа; (α – степень диссоциации растворенного вещества); М – масса 1 моля растворенного вещества; R – универсальная газовая постоянная. Согласно этому уравнению, осмотическое давление раствора NaCl концентрацией 35 г/дм3 при t = 20 °С составит р = 1,8·0,82·293·35/58,5 = 2,58 МПа. Чтобы осуществить обработку высокоминерализованной воды обратным осмосом, нужно, создав (в отсеке с раствором) избыточное давление, превышающее осмотическое, заставить молекулы воды диффундировать через полупроницаемую мембрану в направлении, противоположном прямому осмосу, т.е. со стороны высокоминерализованной воды в отсек чистой воды (рис.8.1).
Рис.8.1. Принципиальная схема прямого и обратного осмоса: а) начало осмотического переноса; б) равновесное состояние; в) обратный осмос; 1 – пресная вода; 2 – солёная вода; 3 – мембрана Преимущество обратного осмоса перед дистилляцией связано с отсутствием энергоемких фазовых превращений, однако для достижения длительного срока службы полупроницаемых мембран необходима предварительная глубокая очистка воды от коллоидных и глубокодисперсных примесей. Несмотря на кажущуюся простоту процессов, характеризующих обратный осмос, до настоящего времени не сформировался единый взгляд на механизм переноса молекул растворителя через мембраны, но большинство исследователей поддерживают гиперфильтрационную гипотезу. Согласно этой капиллярно-фильтрационной модели в полупроницаемой мембране имеются поры диаметром, достаточным для прохода молекул воды (), но недостаточным для прохождения гидратированных ионов () и молекул растворенных веществ. Из-за невозможности создания реальных изопористых мембран в них имеются более крупные поры, через которые частично могут проникать гидратированные ионы, в результате чего снижается селективность (избирательность) процесса переноса. Гидратная оболочка ионов увеличивается, как известно, с возрастанием заряда ионов, а в ряду одинаковой валентности – с уменьшением кристалло-графического радиуса иона. С позиции капиллярно-фильтрационной модели с возрастанием степени гидратации ионов должна увеличиваться эффективность их задержки. Это подтверждается результатом работы установок обратного осмоса с ацетилцеллюлозными мембранами, в которых порядок задержки ионов соответствует лиотропному ряду (как при ионном обмене). Изложенное показывает, что эффективность процесса обратного осмоса определяется главным образом свойствами мембран, которые должны характеризоваться высокой разделяющей способностью, селективностью и удельной проницаемостью, быть химически стойкими и механически прочными, иметь низкую стоимость. При обработке водных растворов материал полупроницаемой мембраны должен обладать также гидрофильными свойствами.
Рис.8.2. Структура ацетилцелюлозной мембраны: 1 – активный слой; 2 – поддерживающий слой
В настоящее время для обратноосмотических установок применяют полимерные мембраны из ацетатов целлюлозы, полученные путем частичного испарения растворителя и последующего осаждения полимера. Ацетилцеллюлозные мембраны имеют асимметрическую структуру (рис. 8.2), в которой поверхностный слой толщиной 0,25–0,5 мкм характеризуется высокой плотностью. Остальная масса толщиной около 150 мкм с размером пор 0,1–1 мкм обеспечивает лишь механическую прочность мембран и служит подложкой для поверхностного слоя, не выполняя функции селективного барьера. При опреснении раствор приводится в контакт с плотным активным слоем мембраны. Кроме ацетилцеллюлозных мембран типа МГА, отечественной промышленностью выпускаются полупроницаемые мембраны типа МГЭ на основе этилцеллюлозы и мембраны типа МГП на основе ароматических полиамидов, основные характеристики которых приведены в табл. 8.1.
Таблица 8.1 Характеристика обратноосмотических мембран
Перечисленные марки мембран обладают различной селективностью и проницаемостью. Мембраны типа МГА находят применение для опреснения водных сред при рН = 5–8, в кислых и щелочных средах такие мембраны подвергаются гидролизу, оказывающему отрицательное воздействие на их характеристики, мембраны типа МГЭ – для обессоливания водных растворов с рН = 1–14, мембраны типа МГП – для разделения и концентрирования агрессивных сред, содержащих органические растворители, с рН = 1–12 при температуре до 150 °С. Полупроницаемые мембраны в виде полых волокон получают из различных полимеров. Внутренний диаметр волокон составляет 30–150 мкм, толщина стенки 10–500 мкм, что позволяет получить высокую плотность их упаковки в обратноосмотических установках на уровне нескольких тысяч квадратных метров на
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.007 сек.) |