|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Основные характеристики для оценки освещенияСветовой поток — мощность лучистой энергии, оцениваемая по световому ощущению. Единица измерения — люмен (лм). 1 люмен равен количеству световой энергии в 1 Дж, проходящему через единицу площади 1м. Сила света, пространственная плотность излучаемого потока, определяется отношением светового патока к величине телесного угла, в котором он определен. Единицей измерения является кандела (кд). Освещенность — определяется как световой поток, приходящ. на единицу площади освещ. поверхности. Единица измерения — люкс (л к). Яркость — это уровень светового ощущ., величина, которую непосредственно воспринимает наш глаз.Основн. физиологич. функциями глаза являются контрастная чувствительность, зрительная адаптация, острога зрения, скорость различения и устойчивость ясного видения. Контрастная чувствительн. показывает во сколько раз яркость фона выше пороговой разности яркости объекта. Острота зрения — способность зрительного анализатора различать мелкие детали предметов. Приближая рассматриваемый предмет к глазу, мы увеличиваем угол зрения, а с ним и размеры изображения на сетчатке. Это позволяет рассмотреть более мелкие детали. Четкое изображение рассматриваемого предмета наблюдается в том случае, если лучи света от предмета после их преломления в средах глаза собираются в фокус глаза на сетчатке. При близорукости фокус оказывается лежащим впереди сетчатки и на нее попадают расходящиеся лучи, при этом изображение получается расплывчатым.Глаз человека обладает способностью приспосабливаться к изменению освещенности. Процесс приспособления к тому или иному уровню яркости называется адаптацией. При повышении яркости наблюдается световая, а при понижении яркости — темновая адаптация. Скорость различения — способность глаза различать детали предметов за минимальное время наблюдения. Устойчивость ясного видения — способность зрительного анализатора отчетливо различать объект в течение заданного времени; чем дольше длится ясное видение, тем выше произв-сть зрительного анализатора. Благоприятные условия работы зрительного анализатора обеспечиваются как уровнем освещения, так и качеством освещения. Кач-во освещ-ния обеспечивается отсутствием блесткости, равномерным распределением яркости на рабочей поверхности, отсутствием теней. Наилучшие условия для работы зрит. анализатора дает ест. освещение, затем искусств., приближающееся к спектру ест. света, и смешанное освещение. Подбором соответств. искусств. источника освещ-ия можно создать оптимальн. условия работы. Более простым, но менее точным является геометрический метод оценки естеств. освещения, при котором определяется отношение остекленной площади светопроемов к площади пола (СК). Так, световой коэффициент для учебных и администр. помещений должен составлять 1:6-1:8. Проектируемое искусств. освещ-ние оценивается по многим показателям, характериз. тип и кол-во осветительн. ламп. Чаще всего могут быть использованы следующие виды систем освещения: общая и комбинированная, то есть местная в сочетании с общей. При общей системе светильники располагают или в горизонтальной плоскости потолка или сосредоточивают локально. Условия освещенности зависят от соотношения расстояния между светильниками в горизонтальной плоскости и высотой их подвеса. На оптимум этого соотношения влияет тип светильников. Оценку освещ-сти в помещениях и на рабочих местах осуществляют прямым и косвенным методами. Прямой метод заключается в определении освещ-сти при помощи люксметра. Люксметр представляет собой микроамперметр, подключенный к фотоэлементу (как правило, селеновому) и проградуированный в единицах освещ-сти. Косвенный метод оценки освещ-ия заключ. в определении КЕО, СК. Затем полученные показатели сравнивают со стандартами. КЕО (коэффициента естественной освещенности) и геометрического показателя СК (светового коэффициента).
31.Ионизирющие излучения. Действия на организм. Радиоактивные излучения (альфа-,бета-частицы, нейтроны, гамма-кванты) обладают различной проникающей и ионизирующей способностью. Наименьшей проникающей способностью обладают альфа-частицы(ядра гелия), длина пробега которых в ткани человека составляет доли миллиметра и в воздухе —несколько сантиметров. Они не могут даже пройти через лист бумаги, но обладают наибольшей ионизирующей способностью. Бета-частицы по сравнению с альфа-частицами обладают большей проникающей способностью (длина пробега в воздухе составляет метры) и уже задерживаются не бумагой, а более твердыми материалами (алюминий, оргстекло и др.). Однако ионизирующая способность бета-частиц (электроны, позитроны) в 1000 раз меньше альфа-частиц и при пробеге в "воздухе на 1 см пути образует несколько десятков пар ионов. Гамма-кванты по своей природе относятся к электромагнитным излучениями и обладают большой проникающей способностью (в воздухе до нескольких километров); их ионизирующая способность существенно меньше, чем у альфа- и бета-частиц. Нейтроны (частицы ядра атома) обладают также значительной проникающей способностью, что объясняется отсутствием у них заряда. Их ионизирующая способность связана с так называемой «наведенной радиоактивностью», которая образуется в результате «попадания» нейтрона в ядро атома вещества и тем самым нарушает его стабильность, образует радиоактивный изотоп. Ионизирующая способность нейтронов при определенных условиях может быть аналогичной альфа-излучению. Ионизирующие излучения, обладающие большой проникающей способностью представляют опасность в большей степени при внешнем облучении, а альфа- и бета-излучения при непосредственном воздействии на ткани организма при попадании внутрь организма с вдыхаемым воздухом, водой, пищей. При внешнем облучении всего тела или отдельных его участков (местном воздействии) или внутреннем облучении человека или животных в поражающих дозах может развиться заболевание, называемое лучевой болезнью. В настоящее время лучевое поражение людей может быть связано с нарушением правил и норм радиационной безопасности при выполнении работ с источниками ионизирующих излучений, при авариях на радиационноопасных объектах, при ядерных взрывах и др. В зависимости от полученной дозы и длительности облучения у пострадавших может развиться острая или хроническая лучевая болезнь.
32. ОЛБ стадии. Острая лучевая болезнь развивается при однократном тотальном облучении тела в поражающих дозах свыше 100 рад (1 грей). По тяжести течения различают легкую, средней тяжести, тяжелую и крайне тяжелую формы острой лучевой болезни. В настоящее время считается, что при относительно равномерном гамма-облучении острая лучевая болезнь в легкой форме развивается при дозе 100— 200 рад (1-2 грея), средней тяжести -- 200-400 рад (2—4 грея), в тяжелой форме при дозе облучения 400-600 рад (4-6 грей) и крайне тяжелая форма при дозе свыше 600 рад (6 грей). Лучевая болезнь всегда имеет затяжной характер. При этом выделяют четыре периода течения болезни: первичной лучевой реакции, скрытый период или период мнимого благополучия, период выраженных клинических проявлений и период выздоровления.Для тяжелой формы лучевой болезни характерны быстрое начало и бурное развитие клинических признаков первичн. реакции, которая развивается в первые часы после облучения и длится от неск. часов до нескольк. дней. При этом пострадавшие жалуются на резкую слабость, головную боль, головокружение, сильную жажду, тошноту. Через полчаса или позже появляется рвота. Больные становятся беспокойны, возбуждены, а впоследствии заторможены, вялы; у одних возможна бессоница, у других развивается сонливость. У больных повыш. температура тела, отмечается повыш. потливость, выраженное кровенаполн. сосудов склер (глаз); учащается пульс, снижается артериальное давление. Разгар лучевой болезни при тяжелой форме течения отмечается через 10—20 суток после облучения. В этот период самочувствие больных резко ухудшается, нарастает слабость, апатия, бессонница, исчезает аппетит; иногда у больных отмечаются слуховые и зрит. галлюцинации; вновь повышается температура. В этот период отмечается снижение веса тела, т.е. формируется лучевая кахексия,(истощение), отмечаются кожные кровоизлияния. Через 2 недели от начала заболевания выпадают волосы, иногда до полного облысения. Слизистые оболочки полости рта и носа изъязвляются, десны кровоточат. Отмечаются носовые кровотечения и кровоизлияния в сетчатку глаз и другие ткани. В особо тяжелых случаях живот вздут, при надавливании болезнен. Артериальное давление снижено, пульс слабый и частый. Выделение мочи снижено, стул жидкий, иногда кровавого характера. Имеются специфич. изменения в периферич. крови и костном мозге больных. Иммунитет у больных к инфекциям резко снижен, в силу чего у них могут развиться септич. состояния. При неблагоприятных случаях течения лучевой болезни может наступить смерть больного от остановки сердца или паралича дыхания. При благоприятном течении болезни спустя 4—6 недель после облуч. начинается период выздоровления, который длится в течение нескольких месяцев. Выздоровление происходит крайне медленно: нормализуются температура, сон, уменьшается слабость, появляется аппетит и постепенно нарастает вес. При поражении средней тяжести отмечаются менее выраженные явления первичной реакции, особенно рвота (появляется через 30 минут — 3 часа). Период мнимого благополучия более растянут, и может длиться 3—4 недели. Температура тела повышается незначительно. В период разгара лучевой болезни средней тяжести волосы выпадают только на отдельных участках, изъязвления кожи и слизистых оболочек, как правило, отсутствуют. Легкая форма лучевой болезни сопровождается слабо выраженной первичной реакцией или ее отсутствием. После облучения у больных через 1,5 -3 недели появляются слабость, быстрая утомляемость, головные боли, потливость. У пострадавших не отмечается кровоточивости, изъязвлений кожи и слизистых оболочек; выздоровление идет как правило достаточно полно и быстро.В период разгара лучевой болезни у больных возможны осложнения в виде воспаления легких и развития септических состояний, кровоизлияния в мозг и другие органы. Все лица, перенесшие лучевую болезнь длительное время остаются легко истощаемыми, эмоционально неуравновешенными, со сниженной устойчивостью организма к неблагоприятным факторам среды.У некоторых облученных могут развиться в отдаленные сроки последствия облучения в виде лейкоза, злокачественных опухолей, генетических нарушений и др.
33.Механические колебания. Их характеристика и воздействие на организм. Колебания — многократное повторение одинаковых или почти одинаковых процессов, — сопутствуют многим природн. процессам и явлениям, вызванным человеч. деят., — от простейших колебаний маятника до эл-магнитных колебаний распростр. световой волны. Механич. колебания — это периодич. повторяющ. движения, вращательные или воз-вратно постунательные. Это тепловые колебания атомов, биение сердца, колебания моста под ногами, земли от проезжающего рядом поезда. Любой процесс механич. колебаний можно свести к одному или нескольким гармонич. синусоидальн. колебаниям. Основн. параметры гармонич.колебания: амплитуда, равная макс. отклонению от положения равновесия (м); скорость колебаний (м/с); ускорение (м/ с2); период колебаний, равный времени одного полного колебания (с); частота колебаний, равная числу полных колебаний за единицу времени (Гц). Все виды техники, имеющие движущиеся узлы, транспорт — создают механич. колебания. Увеличение быстродействия и мощности техники привело к резкому повышению уровня вибрации. Вибрация — это малые механич. колебания, возникающие в упругих телах под воздействием перемен. сил. Так, электродвигатель передает на фундамент вибрацию, вызываемую неуравновеш. ротором. Идеально уравновесить элементы механизмов практически невозможно, поэтому в механизмах с вращающимися частями почти всегда возникает вибрация. Резонансная вибрация вагона возникает в результате близости частоты силы воздействия на стыках рельсов к собственной частоте вагона. Вибрация по земле распространяется в виде упругих волн и вызывает колебания зданий и сооружений. Вибрация машин может приводить к нарушению функционирования техники и вызвать серьезные аварии. Установлено, что вибрация является причиной 80% аварий в машинах, в частности, она приводит к накоплению усталостных эффектов в металлах, появлению трещин. При воздействии вибрации на человека наиболее существенно то, что тело человека можно представить в виде сложной динамической системы. Многочисл. исследования показали, что эта динамическая система меняется в зависимости от позы человека, его состояния — расслабленности или напряженности — и других факторов. Для такой системы существуют опасные, резонансные частоты, и если внешние силы воздействуют на человека с частотами, близкими или равными резонансным, то резко возрастает амплитуда колебаний, как всего тела, так и отдельных его органов. Для тела человека в положении сидя резонанс наступает при частоте 4-6 Гц, для головы 20-30 Гц, для глазных яблок 60-90 Гц. При этих частотах интенсивная вибрация может привести к травматизации позвоночника и костной ткани, расстройству зрения, у женщин вызвать преждевременные роды. Колебания вызывают в тканях организма переменные механические напряжения. Изменения напряжения улавливаются множеством рецепторов и трансформируются в энергию биоэлектрич. и биохимич. процессов. Информация о действующей на человека вибрации воспринимается особым органом чувств — вестибулярным аппаратом. Вестибулярный аппарат располагается в височной кости черепа и состоит из преддверия и полукружных каналов, расположенных во взаимо перпендикулярных плоскостях. Вестибулярн. аппарат обеспеч. анализ положений и перемещений головы в пространстве, активизацию тонуса мышц и поддержание равновесия тела. В преддверии и полукружных каналах имеются рецепторы и эндолимфа (жидкость, заполняющая каналы и преддверие). При перемещении тела и движениях головы эндолимфа оказывает неодинаковое давление на чувствит. клетки. Поскольку полукружные каналы располагаются в трех взаимо перпендикулярных плоскостях, то при любом перемещении тела и головы возбуждаются нервные клетки разных отделов вестибулярного аппарата. Нервн. волокна, идущие от рецепторов вестибулярн. аппарата, образуют вестибулярн. нерв, который присоединяется к слуховому нерву и направляется в головн. мозг. В соответств. участке коры головного мозга в височной доле анализируются сигналы от рецепторов вестибулярного аппарата.
34.Вибрационная болезнь, причины возникновения, формы. Вибрация — это малые механические колебания, возникающие в упругих телах под воздействием переменных сил. Воздействие вибрации на организм человека определяется уровнем виброскорости и виброускорения, диапазоном действующих частот, индивидуальными особенностями человека. За нулевой уровень виброскорости принята величина 5 • 10~8 м/с, за нулевой уровень колебательного ускорения принята величина 3 • 10~4 м/с2, рассчитанные по порогу чувствительности организма.По способу передачи на человека вибрация подразделяется на: общую, передающуюся через опорные поверхности на тело сидящего или стоящего человека; локальную, передающуюся через руки человека. Длительное воздействие вибраций ведет к вибрационной болезни, довольно распространенному профессиональному заболеванию. Важно знать, что в течении вибрационной болезни, в зависимости от степени поражения, различают четыре стадии. В первой, начальной стадии симптомы незначительны: слабо выраженная боль в руках, снижение порога вибрационной чувствительности, спазм капилляров, боли в мышцах плечевого пояса. Во второй стадии усиливаются боли в верхних конечностях, наблюдается расстройство чувствительности, снижается температура и синеет кожа кистей рук, появляется потливость. При условии исключения вибрации на первой и второй стадии лечение эффективно и изменения обратимы. Третья и четвертая стадии характеризуются интенсивными болями в руках, резким снижением температуры кистей рук. Отмечаются изменения со стороны нервной системы, эндокринной системы, сосудистые изменения. Нарушения приобретают генерализованный характер, наблюдаются спазмы мозговых сосудов и сосудов сердца. Больные страдают головокружениями, головными и загрудинными болями, изменения имеют стойкий характер, необратимы. Виброзащита человека представляет собой сложную проблему биомеханики. При разработке методов виброзащиты необходимо учитывать эмоциональное состояние человека, напряженность работы и степень его утомления. Основная мера защиты от вибрации — виброизоляция источника колебаний. Примером являются автомобильные и вагонные рессоры. Виброактивные агрегаты устанавливаются на виброизоляторах (пружины, упругие прокладки, пневматические или гидравлические устройства), защищающих фундамент от воздействий. Санитарные нормы и правила регламентируют предельно допустимые уровни вибрации, меры по снижению вибрации и лечебно-профилактические мероприятия. Санитарными правилами предусматривается ограничение продолжительности контакта человека с виброопасным оборудованием. Биологическая активность вибрации используется для лечебных целей. Известно, что факторы, действующие на живые объекты, вызывают, в зависимости от интенсивности действия, противоположные по значению явления: стимуляцию биопроцессов или их угнетение. Правильно дозированные вибрации определенных частот не только не вредны, но, напротив, увеличивают активность жизненно важных процессов в организме. При кратковременном действии вибрации наблюдается снижение болевой чувствительности. Специальный вибромассажер снимает мышечную усталость и применяется для ускорения восстановительных нервно-мышечных процессов у спортсменов.
35.Акустические колебания, их характеристика и воздействие на организм. Механич. колебания в упругих средах вызывают распространение в этих средах упругих волн, называемых акустич. колебаниями. Энергия от источника колебаний передается частицам среды. По мере распространения волны частицы вовлекаются в колебат. движение с частотой, равной частоте источника колебаний, и с запаздыванием по фазе, зависящем от расстояния до источника и от скорости распространения волны. Расстояние между двумя ближайш. частицами среды, колеблющимися в одной фазе, называется длиной волны. Длина волны — это путь, пройденный волной за время, равное периоду колебаний.Скорость звука в воздухе при нормальных условиях составляет 330 м/с, в воде около 1400 м/с, в стали порядка 5000 м/с. При восприятии человеком звуки различают по высоте и громкости. Высота звука определяется частотой колебаний: чем больше частота колебаний, тем выше звук. Однако субъективно оцениваемая громкость возрастает гораздо медленнее, чем интенсивность звуковых волн. Для сравнит. оценки можно указать, что средний уровень громкости речи составляет 60 дБ, а мотор самолета на расстоянии 25 м производит шум в 120 дБ. Миним. интенсивность звуковой волны, вызывающая ощущение звука, называется порогом слышимости. Порог слышимости у разных людей различен и зависит от частоты звука. Интенсивн. звука, при которой ухо начинает ощущать давление и боль, называется порогом болевого ощущения. На практике в качестве порога болевого ощущения принята интенсивность звука140 дБ.Шум — совокупность звуков различн. частоты и инт-сти, беспорядочно изменяющихся во времени. Для нормальн. существования, чтобы не ощущать себя изолированным от мира, человеку нужен шум в 10—20 дБ. Развитие техники и промышленного производства сопровождалось повышением уровня шума, воздействующего на человека. По частотному диапазону шумы подразделяются на низкочастотн. — до 350 Гц среднечастотн. 350—800 Гц и высокочастотн. — выше 800 Гц. По характеру спектра шумы бывают широкополосные, с непрерывным спектром и тональные, в спектре которых имеются слышимые тона. По временным характеристикам шумы бывают постоян., прерывист., импульсн., колеблющ. во времени.Звуковое давление - это среднее по времени избыточн. давление на препятствие, помещ. на пути волны. Для практических целей удобной является характеристика звука, измеряемая в децибелах. Для оценки различных шумов измеряются уровни звука с помощью шумомеров.Для оценки физиологич. воздействия шума на человека используется громкость и уровень громкости. Шум оказывает вредное воздействие на организм человека, особенно на ЦНС, вызывая переутомление и истощение клеток головного мозга. Под влиянием шума возникает бессонница, быстро развивается утомляемость, понижается внимание, снижается общая работоспособность и производ-сть труда. Длит. воздействие на организм шума и связанные с этим нарушения со стороны центральной нервной системы рассматриваются как один из факторов, способствующ. возникновению гипертонич. болезни.Под влиянием шума возникают явления утомления слуха и ослабления слуха. Эти явления с прекращением шума быстро проходят. Если же переутомление слуха повторяется систематически в течение длит. срока, то развивается тугоухость. Так, кратковрем. воздейств. уровня 120 дБ (рев самолета), не приводит к необратимым последствиям. Длительн. воздействие шума 80—90 дБ приводит к профессиональной глухоте. Тугоухость — стойкое понижение слуха, затрудняющее восприятие речи окружающих в обычных условиях. Оценка состояния слуха производится с помощью аудиометрии. Аудиометрия — изменение остроты слуха, — проводится с помощью спец. электроакустич. аппарата — аудиометра. Уровень шума нормируется санитарными нормами и государственными стандартами и не должен превышать допустимых значений.
39.Поражение эл.током. Первая помощь. Эл. ток — это упорядоченное движение эл. зарядов. Сила тока в участке цепи прямо пропорциональна разности потенциалов, т. е. напряж. на концах участка и обратно пропорциональна сопротивлению участка цепи. Прикоснувшись к проводнику, находящемуся под напряж., человек включает себя в эл. цепь, если он плохо изолирован от земли или одновременно касается объекта с другим значением потенциала. В этом случае через тело человека проходит эл.ток. Характер и глубина воздействия эл. тока на организм человека зависит от силы и рода тока, времени его действия, пути прохождения через тело человека. Пороговым является ток около 1 мА. При большем токе человек начинает ощущать неприятн. болезнен. сокращ. мышц, а при токе 12—15 мА уже не в состоянии управлять своей мышечн. сис-мой и не может самостоят. оторваться от источника тока. Такой ток называется неотпускающ. Действие тока свыше 25 мА на мышечн. ткани ведет к параличу дыхательн. мышц и остановке дыхания. При дальнейш. увелич. тока может наступить фибрилляция сердца. Ток 100 мА считают смертельн. Перемен. ток более опасен, чем постоян. Имеет значение то, какими участками тела человек касается токоведущ.части. Наиб.опасны те пути, при которых поражается головн. или спин. мозг (голова — руки, голова — ноги), сердце и легкие (руки — ноги). Характерн. случаем попадания под напряж. является соприкосновение с одним полюсом или фазой источника тока. Напряж., действующее при этом на человека, называется напряж. прикосновения. Особ. опасны участки, располож. на висках, спине, тыльных сторонах рук, голенях. Повыш. опасность представляют помещения с металлич., земляными полами, сырые. Безопасн. для жизни является напряжение не выше 42 В для сухих, отапливаемых с токонепроводящ. полами помещений без повыш. опасности, не выше 36 В для помещений с повыш. опасностью (металлич., земляные, кирпичн. полы, сырость, возможность касания заземленных элементов конструкций), не выше 12В для особо опасных помещений, имеющих химич. активн. среду или два и более признаков помещений с повыш. опасностью. Действие эл. тока на организм характериз. основн. поражающ. фак-рами: — эл. удар, возбуждающий мышцы тела, приводящ. к судорогам, остановке дыхания и сердца; — эл. ожоги, возникающ. в результате выделения тепла при прохождении тока через тело человека; в зависимости от параметров эл. цепи и состояния человека может возникнуть покраснение кожи, ожог с образованием пузырей; при расплавлении металла происходит металлизация кожи с проникновением в нее частиц металла. Действие тока на организм сводится к нагреванию, электролизу и механич. воздействию. Это может служить объяснением различного исхода эл. травмы при прочих равных условиях. Особенно чувствит. к эл. току нервн. ткань и головной мозг. Механич. действие приводит к разрыву тканей, ударному действию испарения жидкости из тканей организма. При термич. действии происходит перегрев и функциональн. расстройство органов на пути прохождения тока. Электролитич. действие тока выраж. в электролизе жидкости в тканях организма, изменении состава крови. Биологич. действие тока выражается в раздражении и перевозбуждении НС. При пораж. человека эл.током нужно освободить пострадавшего от проводника с током. В первую очередь следует обесточить проводник. Можно взять пострадавшего за одежду, если она сухая и отстает от тела, не прикасаясь при этом к металлическим предметам и частям тела, не покрытым одеждой. При оказании помощи надо изолировать себя от «земли», встав на непроводящ. ток подставку и обернуть руки сухой тканью. Пострадавшему обеспечить покой и наблюдение за пульсом и дыханием. С тех пор, как была установлена возможность возникновения при эл. травме клинич. смерти, необход. при отсутствии пульса и дыхания осущ. реанимац. мероприятия –искусств. вентиляцию легких и непрямой массаж сердца. Эти мероприятия необход. проводить до восстановлен. работы сердца и самостоят. дыхания. При налич. изменений тканей в месте воздействия эл. тока, накладывают сухую асептич. повязку на пораж. часть туловища. Чтобы избежать поражен. эл. током, необход. все работы с эл. оборудованием и приборами проводить после отключ. их от эл. сети.
45, 46. Антропогенные экосистемы. Источники хим. заражения биосферы. Человек в окруж. среде, с одной стороны, является объектом взаимодействия экологич. факторов, с другой — сам оказывает воздействие на среду. С этой точки зрения человек и человеч-во в целом характеризуются важными особенностями. Важная черта человека как экологич. фактора заключается в осознанности, целенаправленности и массированности воздействия на природу. Прирост народонаселения, энергообеспеченности, технической вооруженности людей создает предпосылки для заселения любых экологич. ниш. Особенностью человека как экологич. фактора является также активный, творческий характер его деятельности. Энергия, которую использует человек, обращается на изменение среды обитания. Человек в результате трудовой деятельности создает вокруг себя искусств. среду обитания. Естественные экосистемы вытесняются антропогенными экосистемами, абсолютно доминирующим фактором в которых является человек. В результате человеческой деятельности происходят изменения физич. среды — газового состава воздуха, качества воды и пищи, климата, потока солнечной энергии и других факторов, которые отражаются на здоровье и работоспособности людей. В отклоняющихся экстремальных условиях затрачивается много сил и средств на искусственное создание и поддержание оптимальных условий среды. Масштабы взаимодействия современного общества с природой определяются не биологическими потребностями человека, а непрерывно нарастающим уровнем технич. и соц. развития. Техническая мощь человека достигла масштабов, соизмеримых с биосферными процессами. В сложной иерархич. организации живой природы заложены огромные резервы саморегуляции. Для вскрытия этих резервов необходимо грамотное вмешательство в процессы, протекающие в биосфере. Стратегию такого вмешательства может определить экология, опирающаяся на достижения естественных и социальных наук.
Химическое загрязнение проявляется в изменении химических свойств среды, когда содержание какого-то химического элемента или вещества превышает средние многолетние колебания. Особенно опасны выбросы промышленных предприятий, содержащие двуокись серы и продукты ее превращений, окислы азота и продукты их превращений, что ведет к выпадению кислотных дождей; значительных размеров достигают выбросы в окружающую среду серы, тяжелых металлов, особенно, ртути; летучей золы с частицами недогоревшего топлива, оксидов азота, фтористых соединений, продуктов неполного сгорания топлива. По экспертным оценкам преобладающее влияние на химическое загрязнение окружающей среды оказывает автотранспорт, самым опасным среди выбросов которого являются соединения свинца, в частности, тетраэтилсвинец, угарный газ, углеводороды. Среди более чем 7000 химических соединений, загрязняющих окружающую среду в результате деятельности человека, различают по действию на организм общетоксические и специфические (аллергенные, канцерогенные, мутагенные, и др.) вещества. Среди них выделяют как наиболее опасные семь групп веществ: двуокись азота в воздухе, бензол в воздухе, пестициды в воде, нитраты в воде, диоксины в пищевых продуктах и в почве, полихлорированные дифенины в пищевых продуктах, соляная кислота в почве. Количество вредных веществ и их соединений постоянно растет. Отходы производства вводят в окружающую среду вещества, которые отравляют воздух, воду, почву, продукты питания. Тонкая пленка нефти от потерь при транспортировке, аварий и сбросов, содержащих нефтепродукты, покрывает водные поверхности и вызывает гибель планктона, загрязняет биогеоценозы, нарушает газообмен между атмосферой и гидросферой.
47.Вторичные явление: смог, кислотные дожди, разрушение озонового слоя. Газовый состав атмосферы Земли обеспеч. условия для жизни и защищает все живое от жесткого облучения космич. радиацией. Деятельность человека изменяет сложивш. в природе равновесие. Сильн. загрязнение атмосферы происходит в больших городах: 90% веществ, загрязняющих атмосферу, составляют газы и 10% - твердые частицы. Наиб. опасным результатом загрязнения являются, с моги. Смог появляется при неподвижном воздухе, когда, с одной стороны, отсутствуют горизонтальн. ветры, а с другой — распределение температуры по высоте атмосферы таково, что отсутствует вертикальн. перемешивание атмосферн. слоев. Перемешивание, или конвекция, воздуха в тропосфере происходит за счет того, что по мере движения вверх от земли через каждые 100 метров температура снижается на 0,6°С. Па высоте 8—18 км изменение температуры меняет знак, то есть на- ступает потепление. Такое явление называется инверсией. При опред. условиях инверсия температуры наблюдается уже в нижних слоях тропосферы и ведет к прекращению перемешивания воздуха выше уровня инверсии. Иногда в зимние месяцы можно наблюдать местонахождение инверсии между загрязненным нижним слоем воздуха и верхним прозрачным слоем. Смоги бывают двух типов. Смог,называемый лондонским, наблюдается в туманную безветренную погоду. Весь дым не уносится ветром, а задерживается туманом и остается над городом, производя тяж. действие на здоровье людей. В Лондоне в дни таких сильных смогов было отмечено повышение смертности. Замена тверд. топлива газообразн. значит. уменьш. задымление. Второй тип смогов — фотохимич., появляется в больших южных городах в безветренную ясную погоду, когда скапливаются окислы азота, содержащ. в выхлопных газах автомобилей. Эти соединения под действием солнечн. излуч. проходят цепь химич. превращений. Основн. компонентами фотохимич. смога являются: озон, двуокись азота и закись азота. Скапливаясь в больших кол-вах, эти вещества и продукты их распада под действием УФ излуч. вступают в химич. реакцию с находящимися в атмосфере углеводородами. В результате образуются химич. активные органич. вещ-ва пероксилацилнитраты (ПАН), кот-ые оказывают вредное влияние на организм человека: раздражают слизистую оболочку, ткани дыхательных путей и легких, эти соедине- ния обесцвечивают зелень растений. Вредное воздействие на окружающую среду и организм человека оказывает избыток в смоге озона, обладающего сильным окислительными свойствами. На долю автотранспорта приходится до 50% общего объема атмосферных выбросов техногенного происхождения, в состав автомобильных выбросов входит более 170 токсичных компонентов. Очень опасными загрязнителями биосферы являются окислы азота. Ежегодно в атмосферу Земли поступает около 150 млн. тонн окислов азота, половина из которых выбрасывается тепловыми электростанциями и автомобилями а другая половина образуется в результате процессов окисления, происходящих в биосфере. Сильно ухудшает видимость на улицах города перекись азота — газ желтого цвета, придающий коричневатый оттенок воздуху. Этот газ поглощает УФ лучи, производя фотохимич. загрязнение. Окись азота при взаимодействии с кислородом воздуха образует двуокись азота, которая в результате реакции с атмосферным водяным паром (радикалом гидроксила воды) превращается в азотную кислоту. Капли облаков конденсируются на частицах аэрозолей и молекулах серной и азотной кислоты. При выпадении осадков промывается слой атмосферы между облаком и землей. Так образуются кислотные дожди. Их появление вызвано значительным накоплением окислов серы и азота в атмосфере. Кислотные дожди подавляют биологическую продуктивность почв и водоемов, наносят значительный экономический ущерб. Кислотность осадков оценивается водородным показателем рН, равным отрицательному десятичному логарифму концентрации ионов водорода. Кислотность дождей обусловлена, главным образом, присутствием серной и азотной кислот. При сильной кислотности осадков рН может быть ниже 4,0 и при слабой кислотности рН превышает 5,5. Кислотные дожди ведут к разрушению различных объектов и зданий, взаимодействуют с карбонатом кальция песчаников и известняка, превращая его в гипс, который вымывается дождями. Кислотные дожди вызывают активную коррозию металлических предметов и конструкций. Сжигание горючих ископаемых и других видов топлива сопровождается выбросом углекислого газа в атмосферу. Увеличение количества углекислого газа в результате антропогенного воздействия ведет к изменению теплового баланса Земли. Углекислый газ пропускает падающее на Землю солнечное излучение, но поглощает отраженное от Земли длинноволновое инфракрасное излучение. Это приводит к нагреванию атмосферы. Загрязняющие примеси и пыль в атмосфере поглощают часть падающего на Землю излучения, что дополнительно повышает температуру атмосферы. Нагретая атмосфера посылает дополнительный поток тепла на землю, поднимая ее температуру. Этот процесс называется парниковым по аналогии с парником, в который свободно проходит солнечное излучение в оптической части спектра, а инфракрасное излучение задерживается. По мере увеличения загрязнения атмосферы увеличивается температура поверхности земли. Увеличение средней температуры атмосферы на несколько градусов за счет уменьшения ее прозрачности способно вызвать таяние ледников и повышение уровня моря. Это может сопровождаться затоплением плодородных земель в дельтах рек, изменением солености воды, а также глобальным изменением климата Земли. Разрушительное действие оказывает антропогенное воздействие на атмосферный озон. Озон в стратосфере защищает все живое на Земле от вредного действия коротких волн солнечной радиации. Уменьшение содержание озона в атмосфере на 1% приводит к увеличению на 2% интенсивности падающего на поверхность Земли жесткого ультрафиолетового излучения, губительного для живых клеток. Во время работы реактивных двигателей при сжигании топлива азот и кислород воздуха образуют небольшое количество окислов азота, которые выбрасываются в атмосферу вместе с продуктами сгорания. Если это происходит на небольших высотах, окислы азота возвращаются на землю с осадками. Если же окислы азота выбрасываются выше облаков, то они долго (порядка года) находятся в атмосфере и принимают участие в разрушении озона. Оценки показывают, что ежедневное нахождение на высоте 17 километров примерно 300 сверхзвуковых самолетов ведет к уменьшению количества стратосферного озона на 1%. Наиболее сильное разрушение озона связано с производством фреонов. Фреоны используются в качестве наполнителей аэрозолей, пенящей компоненты и в качестве рабочего вещества холодильников, При использовании баллончиков с аэрозолями, при утечке из холодильных резервуаров фреон попадает в атмосферу. Одна из образующихся компонент — атомарный хлор — активно способствует разрушению озона, причем, молекула хлора действует как катализатор, оставаясь неизменной в десятках тысяч актов разрушения молекул озона. Время нахождения фреонов в стратосфере составляет несколько десятков лет. Проблема влияния фреонов на стратосферный озон приобрела международное значение, особенно в связи с образованием «озоновых дыр». Принята международная программа сокращения производства, использующего фреоны. Иногда метеорологические условия способствуют накоплению вредных примесей у приземной поверхности. Ветер может дуть вдоль ряда источников примесей, при этом примеси суммируются. При сильном ветре вредные примеси перемещаются и рассеиваются в более близких к земле слоях. Наличие изотермических или инверсных слоев, уменьшающих вертикальный обмен в атмосфере, создает опасные метеорологические условия низких под инверсных выбросов. Выбросы выше инверсии способствуют переносу техногенных примесей на большие расстояния. Возрастает опасность значительного загрязнения удаленных территорий. Зимой создаются более благоприятные условия для накопления примесей и концентрации окислов азота в атмосфере выше, чем летом.
5.Классификация опасных и вредных факторов: По степени и характеру действия на организм все факторы условно делят на вредные и опасные. К вредным относятся такие факторы, которые становятся в определенных условиях причиной заболеваний или снижения работоспособности. При этом имеется в виду снижение работоспособности, исчезающее после отдыха или перерыва в активной деятельности. Опасными называют такие факторы, которые приводят в определенных условиях к травматическим повреждениям или внезапным и резким нарушениям здоровья. И опасные и вредные факторы могут быть естественного или природного и антропогенного характера, т.е. создаваемые человеком. И ест. и антроп. факторы могут быть физическими, химическими, биологическими, и психофизическими. Химические факторы: Естественные: химические вещества поступающие в организм человека с воздухом, водой, пищей. (аминокислоты, витамины, белки, жиры, углеводы, микроэлементы). Антропогенные: поступление веществ с различных предприятий и транспорта. Например химическое оружие. Физические факторы: Естественные: все климатические показатели: температура воздуха, влажность, скорость движения ветра, атмосферное давление, солнечная радиация. Антропогенные: различные виды энергии генерируемые человеком: ионизирующее излучение, электрический ток, шумы, вибрация, искусственное освещение, оружие массового поражения. Биологические факторы: Естественные: микроорганизмы: бактерии, вирусы, грибки. Антропогенные: биологические средства зашиты растений, выбросы предприятий пищевой промышленности, ферм, предприятий по производству белков, сывороток, вакцин, биологическое оружие. Психофизические факторы: По характеру их действия на организм человека их делят на физические перегрузки, статические и динамические и на нервно-психологические перегрузки. Прежде всего, умственное перенапряжение, монотонность труда и эмоциональные перегрузки.
54, 55.Определение ПДК,этапы нормирования. Нормирование — это определение количественных показателей факторов окружающей среды, характеризующих безопасные уровни их влияния на состояние здоровья и условия жизни населения. Нормативы не могут быть установлены произвольно, они разрабатываются на основе всестороннего изучения взаимоотношений организма с соответствующими факторами окружающей среды. Соблюдение нормативов на практике способствует созданию благоприятных условий труда, быта и отдыха, снижению заболеваемости, увеличению долголетия и работоспособности всех членов общества. В основу нормирования положены принципы сохранения постоянства внутренней среды организма (гомеостаза) и обеспечения его единства с окружающей средой, зависимости реакций организма от интенсивности и длительности воздействия факторов окружающей среды, пороговости в проявлении неблагоприятных эффектов. При обосновании нормативов используется комплекс физиологических, биохимических, физико-математических и других методов исследования для выявления начальных признаков вредного влияния факторов на организм. Особое внимание уделяется изучению отдаленных эффектов: онкогенного, мутагенного, аллергенного влияния на половые железы, эмбрионы и развивающееся потомство. Окончательная апробация нормативов осуществляется при их использовании на практике путем изучения состояния здоровья людей, контактирующих с нормируемым фактором. Существуют методы учета комбинированного действия комплекса вредных факторов. В зависимости от нормируемого фактора окружающей среды различают: предельно допустимые концентрации (ПДК), допустимые остаточные количества (ДОК), предельно допустимые уровни (ПДУ), ориентировочныебезопасные уровни воздействия (ОБУВ), предельно допустимые выбросы (ПДВ), предельно допустимые сбросы (ПДС) и др. Предельно допустимый уровень фактора (ПДУ) — это тот максимальный уровень воздействия, который при постоянном действии в течение всего рабочего времени и трудового стажа не вызывает биологических изменений адаптационно-компенсаторных возможностей, психологических нарушений у человека и его потомства. Нормативы являются составной частью санитарного законодательства и основой предупредительного и текущего санитарного надзора, а также служат критерием эффективности разрабатываемых и проводимых оздоровительных мероприятий по созданию безопасных условий среды обитания.
57.Очистка и нейтрализация жидких отходов, сточных вод Под загрязнением водных ресурсов понимают любые изменения физич., химич. и биологич. св-в воды в водоемах в связи со сбрасыванием в них жидк., тверд. и газообразн. вещ-в, кот-ые причиняют или могут создать неудобства, делая воду данных водоемов опасной для использован., нанося ущерб народн. хоз-ву, здоровью и безопасности населения. Загрязнение поверхностн. и подземн. вод можно распределить на такие типы: механич. - повышение содержания механич. примесей, свойственное в основном поверхностн. видам загрязнений; химич. - наличие в воде органич. и неорганич. веществ токсич. и нетоксич. действия: бактериальн. и биологич. - наличие в воде разнообразн. патоген. микроорганизмов, грибов и мелких водорослей; радиоактивн. - присутствие радиоактивн. вещ-в в поверхностн. или подземн. водах; тепловое - выпуск в водоемы подогрет. вод тепловых и атомных ЭС. Основн. источниками загрязнения и засорения водоемов является недостаточн. очищ. сточн.воды пром. и коммунальн. предприятий, крупн. животноводч. комплексов, отходы произ-ва при разработке рудных ископ.; воды шахт, рудников; сбросы водного и ж/д трансп.; пестициды и т.д. Загрязняющ. вещ-ва, попадая в природн. водоемы, приводят к качеств. изменен. воды, кот-ые в основном проявляются в изменен. химич. состава воды, в частности, появление в ней вредн. вещ-в, в наличии плавающ. вещ-в на поверхн. воды и откладывании их на дне водоемов. Производств. сточн. воды загрязнены в основном отходами и выбросами произ-ва. Колич. и кач. состав их разнообразен и зависит от отрасли пром-сти, ее технологич. про-сов; их делят на две основные группы: содержащие неорганические примеси, в т.ч. и токсич., и содержащие яды. К первой группе относятся сточн. воды содовых, сульфатн., обогатительн. фабрик свинц., цинк., никель. руд и т.д., в кот-ых содержатся к-ты, щелочи, ионы тяж. металлов и др. Сточн. воды этой группы в основном изменяют физич. св-ва воды. Сточн. воды второй группы сбрасывают нефтеперерабат., нефтехимич. заводы, предприятия органич. синтеза, коксохимич. и др. В стоках содержатся разные нефтепродукты, аммиак, альдегиды, смолы, фенолы и др. вредные вещ-ва. Вредоносн. действ. сточн. вод этой группы заключ. главным образом в окислит. про-сах, вследствие кот-ых уменьш. содержан. в воде кислорода, увелич. биохимич. потребность в нем. Рост населения, возникновен. новых городов значит. увелич. поступлен. быт.стоков во внутр. водоемы. Эти стоки стали источником загрязнен. рек и озер болезнетворн. бактериями. Они находят широкое применен. также в пром-сти и с/ч. Содержащ. в них химич. вещ-ва, поступая со сточн. водами в реки и озера, оказ. значит. влияние на биологич. и физич. режим водоемов. Методы очистки сточных вод можно разделить на механич., химич., физико-химич. и биологич., когда же они применяются вместе, то метод очистки и обезвреживан. сточн. вод назыв. комбинированным. Сущность механич. метода состоит в том, что из сточн. вод путем отстаивания и фильтрац. удаляются механич. примеси. Механич. очистка позволяет выделять из быт. сточн. вод до 60-75% нераствор. примесей, а из промышл. до 95%, многие из кот-ых как ценные примеси, используются в произ-ве. Химич. метод заключ. в том, что в сточн. воды добавляют различн. химич. реагенты, кот-ые вступают в реакцию с загрязнителями и осаждают их в виде нерастворим. осадков. Химич. очисткой достигается уменьш. нерастворим. примесей до 95% и растворимых до 25%. При физико-химич. методе обработки из сточн. вод удаляются тонко дисперсн. и растворенные неорганич. примеси и разрушаются органич. и плохо окисляемые вещ-ва. Среди методов очистки сточн. вод больш. роль должен сыграть биологич. метод, основ. на использ. закономерностей биохимич. и физиологич. самоочищ. рек и водоемов. Есть несколько типов биологич. устройств по очистке сточн. вод: биофильтры, биологич. пруды. В биофильтрах сточн. воды пропускаются через слой крупнозернист. материала, покрытого тонкой бактериальн. пленкой. Благодаря этой пленке интенсивно протекают про-сы биологич. окислен. Именно она служит действующ. началом в биофильтрах.
58. Понятие о способах сбора, утилизации и захоронения пром. отходов. Острой экологической проблемой является размещение быстро растущего количества отходов и очистка старых свалок. Решить проблему может только снижение количества производимых отходов, внедрение безотходных технологий. В США захоронение и сжигание отходов оказывается в три раза дороже, чем переработка отходов и восстановление вторичных материалов — утилизация. Так, одна бутылка может быть в употреблении до тридцати раз. Задачу утилизации облегчает раздельный сбор отходов. Одной из проблем захоронения отходов является образование попутных газов — метана и двуокиси углерода, которые могут приводить к взрывам и пожарам и требуют специального отвода. В густо населенных районах Европы способ захоронения отходов, как требующий слишком больших площадей и способствующий загрязнению подземных вод, был предпочтен другому — сжиганию.
6.Опасные зоны, опасные, чрезвычайные и экстремальные ситуации: Какая-то часть опасных и вредных факторов, — преимущественно это относится к производственной, а в какой-то мере и к другим средам обитания, — обычно имеет внешне определенные, пространственные области проявления, которые называются опасными зонами. Они характеризуются увеличением риска возникновения несчастного случая. Однако, даже если человек находится в опасной зоне, но правильно организует свою деятельность, соблюдает условия безопасности, следит за исправностью технических систем, нарушение здоровья или несчастный случай не возникает. Таким образом, неполадки в здоровье или несчастный случай часто являются следствием нарушения правил личного поведения организационного или технического порядка в момент нахождения человека в опасной зоне. Условия, при которых создается возможность возникновения несчастного случая, называют опасной ситуацией. Важно уметь предупредить переход опасной ситуации в несчастный случай. В процессе деятельности и жизни человек может оказаться в такой опасной ситуации, когда физические и психологические нагрузки достигают таких пределов, при которых индивидуум теряет способность к рациональным поступкам и действиям, адекватным сложившейся ситуации. Такие ситуации называют экстремальными. Чрезвычайная ситуация – нарушение нормальных условий жизнедеятельности людей на определенной территории, вызванное аварией, катастрофой, стихийным или экологическим бедствием, а так же массовым инфекционным заболеванием, которые могут приводить к людским или материальным потерям.
7.Характеристика физических факторов среды обитания: К физическим опасным и вредным факторам среды обитания относятся: - движущиеся машины и механизмы, подвижные части оборудования, неустойчивые конструкции и природные образования - острые падающие предметы -повышение и понижение температуры воздуха и окружающих поверхностей - резкие перепады уровня влажности воздуха - повышенная запыленность и загазованность -повышенный уровень шума, инфразвука, ультразвука, вибрации -повышенное или пониженное барометрическое давление -повышенный уровень ионизирующих излучений -повышенное напряжение в цепи, которая может замкнуться на тело человека - повышенный уровень электромагнитного излучения, ультрафиолетовой и инфракрасной радиации - недостаточное освещение, пониженная контрастность освещения - повышенная яркость, блесткость, пульсация светового потока
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.029 сек.) |