АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Шрёдингеровское описание

Читайте также:
  1. III. Описание мнении (doxography)
  2. А. Общее описание
  3. А. Общее описание
  4. А. Общее описание
  5. Библиографическое описание
  6. Динамическое описание систем
  7. Кинематика (описание движений)
  8. Класс A1 - В общем верификация означает подтверждение того, что описание проекта полностью соответствует спецификации (техническому заданию) проектируемой системы.
  9. Константа Описание Примеры
  10. Краткое описание алгоритма решения задачи
  11. Краткое описание базовой стойки виндсёрфера (парусной стойки).
  12. Краткое описание дисциплины.

Математический аппарат нерелятивистской квантовой механики строится на следующих положениях:

§ Чистые состояния системы описываются ненулевыми векторами комплексного сепарабельного гильбертова пространства , причем векторы и описывают одно и то же состояние тогда и только тогда, когда , где — произвольное комплексное число.

§ Каждой наблюдаемой можно однозначно сопоставить линейный самосопряжённый оператор. При измерении наблюдаемой , при чистом состоянии системы в среднем получается значение, равное

где через обозначается скалярное произведение векторов и .

§ Эволюция чистого состояния гамильтоновой системы определяется уравнением Шрёдингера

где — гамильтониан.

Основные следствия этих положений:

§ При измерении любой квантовой наблюдаемой, возможно получение только ряда фиксированных её значений, равных собственным значениям её оператора — наблюдаемой.

§ Наблюдаемые одновременно измеримы (не влияют на результаты измерений друг друга) тогда и только тогда, когда соответствующие им самосопряжённые операторы перестановочны.

Эти положения позволяют создать математический аппарат, пригодный для описания широкого спектра задач в квантовой механике гамильтоновых систем, находящихся в чистых состояниях. Не все состояния квантовомеханических систем, однако, являются чистыми. В общем случае состояние системы является смешанным и описывается матрицей плотности, для которой справедливо обобщение уравнения Шрёдингера — уравнение фон Неймана (для гамильтоновых систем). Дальнейшее обобщение квантовой механики на динамику открытых, негамильтоновых и диссипативных квантовых систем приводит к уравнению Линдблада.

[править]Стационарное уравнение Шрёдингера

Пусть амплитуда вероятности нахождения частицы в точке М. Стационарное уравнение Шрёдингера позволяет ее определить.
Функция удовлетворяет уравнению:

где —оператор Лапласа, а — потенциальная энергия частицы как функция .

Решение стационарного уравнения


1 | 2 |


Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)