Под обеззараживанием питьевой воды понимают мероприятия по уничтожению в воде бактерий и вирусов, вызывающих инфекционные заболевания. По способу воздействия на микроорганизмы методы обеззараживания воды подразделяются на
· химические, или реагентные;
· физические, или безреагентные;
· комбинированные.
В первом случае должный эффект достигается внесением в воду биологически активных химических соединений; безреагентные методы обеззараживания подразумевают обработку воды физическими воздействиями, а в комбинированных используются одновременно химическое и физическое воздействия. Из числа известных методов обеззараживания воды многие находятся пока на стадии чисто научных разработок. К ним относятся, например, пропускание постоянного, переменного или импульсного тока, анодное разложение, кавитация, радиационное облучение рентгеном, гамма-квантами или ускоренными электронами. Также существуют такие способы, как обработка перекисью водорода, перманганатом калия, ионами тяжелых металлов, иодирование и бромирование [2]. Применение тяжелых металлов (медь, серебро и др.) для обеззараживания питьевой воды основано на использовании их способности оказывать бактерицидное действие в малых концентрациях. Эти металлы могут вводиться в виде растворов солей либо методом электрохимического растворения. В обоих этих случаях возможен косвенный контроль их содержания в воде. Следует заметить, что ПДК ионов серебра и меди в питьевой воде достаточно жесткие.
К химическим способам обеззараживания питьевой воды относится широко применявшееся в начале 20 в. обеззараживание соединениями брома и йода, обладающими сильно выраженными бактерицидными свойствами, но требующими довольно сложной технологии. В современной практике для обеззараживания питьевой воды йодированием предлагается использовать специальные иониты, насыщенные йодом. При пропускании через них воды йод постепенно вымывается из ионита, обеспечивая необходимую дозу в воде. Такое решение приемлемо для малогабаритных индивидуальных установок. Существенным недостатком является изменение концентрации йода во время работы и отсутствие постоянного контроля его концентрации. К физическим способам относится обеззараживание питьевой воды ультразвуком. Оно основано на способности ультразвука вызывать т. н. кавитацию – образование пустот, создающих большую разность давления, что ведет к разрыву клеточной оболочки и гибели бактериальной клетки. Кипячение также является распространенным и надежным способом индивидуального обеззараживания воды. Помимо уничтожения бактерий, вирусов, бактериофагов, антибиотиков и других биологических объектов, часто содержащихся в открытых водоисточниках, удаляются растворенные в воде газы и уменьшается жесткость воды. Вкусовые качества воды при кипячении меняются мало. Сравнительно недавно появились установки обеззараживания, основанные на бактерицидном действии перекиси водорода. Поскольку при высокой активности по отношению к большинству микроорганизмов Н2О2 имеет невысокую стоимость, продукты ее разложения абсолютно безопасны, а необходимые реагенты просты и доступны, этот метод имеет большие перспективы. Наиболее известный и распространенный способ обеззараживания — это комплексное физико-химическое воздействие на воду с целью изменения ее состава для достижения некоего стандарта. Реальными практическими технологиями, прошедшими проверку на действующих крупномасштабных сооружениях очистки воды, являются хлорирование, озонирование и ультрафиолетовое (УФ) облучение с дальнейшей обработкой на угольных фильтрах или полимерных мембранах. Все они позволяют избавиться от мельчайших взвешенных органических частиц, коллоидов и микроорганизмов. Необходимо отметить, что почти все перечисленные процессы требуют точного дозирования реагентов. Особенно это касается процедур введения обеззараживающих реактивов — поскольку они чрезвычайно химически активны и могут представлять определенную опасность при передозировке. Поэтому следует особое внимание уделить подбору дозировочного оборудования, отдавая предпочтение современной цифровой технике. Рассмотрим подробнее эти выше перечисленные методы обеззараживания.
Озонирование воды В последние 20 лет области применения озона значительно расширились и во всем мире ведутся новые разработки. С гигиеничной точки зрения метод озонирования воды имеет существенные преимущества благодаря высокому окислительно-восстановительному потенциалу бактерицидного действия.
По данным ряда исследований озонирование может быть полезным и на ранних стадиях очистки, еще на этапе введения флоккулирующих агентов. Так, введение озона на начальной стадии обработки позволяет за счет обесцвечивания на 30–60% от исходной цветности и флоккулирующего эффекта уменьшить на последующих стадиях обработки дозу коагулянта (обычно, сульфата алюминия) на 15–25%. Совместная обработка озоном и УФ в несколько раз увеличивают скорость реакции окисления нефтепродуктов, фенолов, гуминовых кислот и т.д. Тем не менее, опыт свидетельствует, что полностью отказываться от хлорирования и переходить только на обработку озоном не следует, т.к. предварительные испытания таких установок показали, что в теплое время года, когда температура обрабатываемой природной воды достигает 22°С, озонирование не позволяет достигнуть заданных микробиологических показателей. Озонирование воды основано на свойстве озона разлагаться в воде с образованием атомарного кислорода, разрушающего ферментные системы микробных клеток и окисляющего некоторые соединения, которые придают воде неприятный запах (например, гуминовые основания). Доза озона, необходимая для обеззараживания воды, варьируется в зависимости от содержания в воде органических веществ, от температуры воды и от величины активной реакции воды (рН). Прозрачная и чистая ключевая вода и воды горных рек, малозагрязнённые посторонними примесями, требуют примерно 0,5 мг/л озона. Вода, поступающая из открытых водохранилищ, может вызывать расход озона до 2 мг/л. Средняя доза озона составляет 1 мг/л. Экспериментальные исследования показали, что с повышением температуры воды необходимо также увеличивать дозу озона. Продолжительность контакта озоно-воздушной смеси с обрабатываемой водой колеблется от 5 до 15 минут сообразно с типами установок и их производительностью (при повышении температуры время контакта увеличивается). Хлор и озон на бактерии влияют не одинаково. При увеличении интенсивности хлорирования происходит прогрессивное отмирание бактерий. Между тем, при озонировании обнаруживается внезапное бактерицидное действие озона, соответствующее определённой критической дозе, равной 0,4-0,5 мг/л (рис.1). Для меньших доз озона его бактерицидность незначительна, но и как только достигается критическая доза, отмирание бактерий становится сразу резким и полным. Последние исследования механизма озонирования показали, что действие его происходит быстро при условии поддержания нужной концентрации в течение определённого времени. Это действие обусловлено озонированием массы бактериальных протеинов в процессе каталитического окисления.
Рис. 1 На обеззараживающее действие озона влияет цветность воды, так озонирование неосветлённой воды неэкономично и неэффективно, так как большие количества озона расходуются на окисление веществ, которые могут быть задержаны обычными очистными сооружениями. Обработка воды озоном целесообразна только после её осветления, а так же фильтрования (доза озона уменьшается в 2-2,5 раза, чем для нефильтрованной воды) [3]. Исследования показали, что кишечная палочка, оказавшаяся наиболее устойчивой к действию окислителей из всей группы кишечных бактерий, быстро погибает при озонировании. Также эффективно использование озонирования в борьбе с возбудителями брюшного тифа и бактериальной дизентерии. Озон обладает высокой эффективностью в уничтожении спор, цист и многих других патогенных микробов, а также отличается высоким спорицидным эффектом. Озон пропускали в течение определённого времени через воду дистиллированную, водопроводную, колодезную, речную и прудовую, заражённую спорами антропоида. Полное обеззараживание загрязнённых естественных вод, содержащих до 10000 спор антропоида в 1 мл, достигалось после пропуска озона через воду в течение 1 часа. Также была установлена прямая зависимость величины озонопоглощаемости воды от степени её загрязнения, чем чище вода, тем меньше озонопоглощаемость. Озон оказывает резко выраженное, быстрое и радикальное воздействие на многие вирусы. Механизм этого явления объясняется полным окислением вирусной материи [4].
Обесцвечивающее действие озона объясняется окислением соединений, вызывающих цветность воды; они превращаются в более простые молекулы, не имеющие окраски. Потребная доза озона зависит от необходимой степени обесцвечивания, причём увеличение расхода его происходит непропорционально.
С физической точки зрения вода после озонирования претерпевает значительные качественные изменения. В достаточно большом слое вода приобретает красивую голубоватую окраску, свойственную родниковой воде. При озонировании вода хорошо аэрируется, что делает её более усваиваемой и приятной для питьевого потребления. С органолептической точки зрения в озонированной воде не только не возникает каких-либо привкусов и запахов но, наоборот, устраняются всякие следы привкуса и запаха, ранее существовавшие в обрабатываемой воде
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг(0.003 сек.)