|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
ОЦЕНКА ДОСТОВЕРНОСТИ СРЕДНИХ И ОТНОСИТЕЛЬНЫХ ВЕЛИЧИНПри оценке достоверности средних или относительных величин руководствуются следующим правилом:средняя арифметическая или относительная величина при числе наблюдений в выборочной совокупности 30 и более должны превышать свою ошибку не менее чем в 2 раза. > 2 или > 2 В рассматриваемых примерах средняя арифметическая, характеризующая рост восьмилетних мальчиков и показатель „индекс здоровья” превышают свои ошибки соответственно: раз, раз, что соответствует высокой степени их статистической достоверности с вероятностью более чем 99,7 %. Высказанное положение вытекает из теории «вероятности», под которой понимается числовая мера объективной возможности появления случайного события. Вероятность - число, которое находится между 0 и 1, или между 0% и 100%. Математиками определено, что той или иной вероятности, выраженной в процентах, соответствует определенное значение критерия t Стьюдента. Так, например, вероятности равной Р = 68,3% соответствует t= 1,0, вероятности равной Р = 95,5 % соответствует t = 2,0 вероятности равной Р = 99,7 % соответствует t = 3,0.
В медико-биологических исследованиях событие является статистически достоверным, если вероятность его появления соответствует значению критерия t Стьюдента, равное 2.
Средняя ошибка позволяет не только оценить достоверность относительного показателя или средней величины, но и найти доверительные границы средней величины или относительного показателя в генеральной совокупности М ген.= М выб. ± t m Р ген. = Р выб. ± t m Как уже было сказано, величина средней ошибки указывает, насколько средняя величина и относительный показатель выборочной совокупности отличаются от соответствующих величин в генеральной совокупности. Величина t*m является тем доверительным интервалом по отношению к средней или относительной величине, в котором с определенной степенью вероятности можно ожидать нахождение средней или относительной величины в генеральной совокупности. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |