АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Энтропия

Читайте также:
  1. ВТОРОЕ НАЧАЛО ТЕРМОДИНАМИКИ. ЭНТРОПИЯ. ЗАКОН ВОЗРАСТАНИЯ ЭНТРОПИИ.
  2. Вычисление теплового потока. Энтропия
  3. Энтропия погрешности или дезинформирующее действие погрешности
  4. Энтропия. Второе начало термодинамики

Как уже указывалось, величина не является полным диффе­ренциалом. Действительно, для того что­бы проинтегрировать правую часть этого выражения, нужно знать зависимость р от v, т. е. процесс, который соверша­ет газ.

В математике доказывается, что диф­ференциальный двучлен всегда можно превратить в полный дифференциал пу­тем умножения (или деления) на интег­рирующий множитель (или делитель). Таким интегрирующим делителем для элементарного количества теплоты q является абсолютная температура Т.

Покажем это на примере изменения параметров идеального газа в равновес­ных процессах:

. (3.3)

Выражение при равновесном изменении состояния газа есть полный дифференциал некоторой функции состо­яния. Она называется энтропией, обозначается для 1 кг газа через s и из­меряется в Дж/(кгК). Для произволь­ного количества газа энтропия, обозна­чаемая через S, равна S=Ms и измеря­ется в Дж/К.

Таким образом, аналитически энтро­пия определяется следующим образом:

. (3.4)

Формула (3.4) справедлива как для идеальных газов, так и для реальных тел. Подобно любой другой функции со­стояния энтропия может быть представ­лена в виде функции любых двух пара­метров состояния:

; ; .

 

Значение энтропии для заданного со­стояния определяется интегрированием уравнения (3.4):

где — константа интегрирования.

При температурах, близких к абсо­лютному нулю, все известные вещества находятся в конденсированном состоя­нии. В. Нернст (1906 г.) эксперименталь­но установил, а М. Планк (1912 г.) окон­чательно сформулировал следующий принцип: при температуре, стремящейся к абсолютному нулю, энтропия вещества, находящегося в конденсированном состоянии с упорядоченной кристалличе­ской структурой, стремится к нулю, т. е. s0 = 0 при Т = 0 К. Этот закон на­зывают третьим законом термодинамики или тепловой тео­ремой Нернста. Он позволяет рассчитать абсолютное значение энтропии в отличие от внутренней энергии и энтальпии, которые всегда отсчитываются от про­извольного уровня.

Однако в технической термодинамике обычно используется не абсолютное зна­чение энтропии, а ее изменение в каком-либо процессе:

,

поэтому энтропию тоже часто отсчитыва­ют от произвольно выбранного уровня.

Получим формулы, позволяющие вы­числить изменение энтропии идеального газа. Для этого проинтегрируем уравне­ние (3.3), положив для простоты cv = const:

. (3.5)

Из уравнения Клапейрона, записан­ного для состояний 1 и 2, следует:

.

После подстановки отношений и в выражение (3.4) получим следующие формулы для изменения энтро­пии идеального газа:

;

. (3.6)

Поскольку энтропия есть функция со­стояния рабочего тела, уравнениями (3.5) — (3.6) можно пользоваться вне зависимости от пути перехода рабочего тела между состояниями 1 и 2 и, в частности, от того, равновесный этот переход или нет.

Рисунок 3.2 - Графическое изображение теплоты в T, s – координатах

 

Понятие энтропии позволяет ввести чрезвычайно удобную для термодинами­ческих расчетов Т, s-диаграмму, на кото­рой (как и на p,v -диаграмме) состояние термодинамической системы изобража­ется точкой, а равновесный термодина­мический процесс линией (Рисунок 3.2).

В равновесном процессе

;

.

Очевидно, что в Т, s-диаграмме эле­ментарная теплота процесса изобра­жается элементарной площадкой с высо­той Т и основанием ds, а площадь, огра­ниченная линией процесса, крайними ординатами и осью абсцисс, эквивалент­на теплоте процесса.

Формула показывает, что ds и имеют одинаковые знаки, следова­тельно, по характеру изменения энтропии в равновесном процессе можно судить о том, в каком направлении происходит теплообмен. При подводе теплоты к телу ( >0 ) его энтропия возрастает (ds>0), а при отводе теплоты ( <0) — убывает (ds<0).


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)