|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Уравнение первого закона термодинамики для потокаПод открытыми понимаются термодинамические системы, которые кроме обмена теплотой и работой с окружающей средой допускают также и обмен массой. В технике широко используются процессы преобразования энергии в потоке, когда рабочее тело перемещается из области с одними параметрами в область с другими. Это, например, расширение пара в турбинах, сжатие газов в компрессорах. Будем рассматривать лишь одномерные стационарные потоки, в которых параметры зависят только от одной координаты, совпадающей с направлением вектора скорости, и не зависят от времени. Условие неразрывности течения в таких потоках заключается в одинаковости массового расхода m рабочего тела в любом сечении:
где F — площадь поперечного сечения канала; с — скорость рабочего тела. Рассмотрим термодинамическую систему, представленную схематически на рисунке 7.1. Рисунок 7.1 - Открытая термодинамическая система
По трубопроводу 1 рабочее тело с параметрами Т1 , p 1, v 1 подается со скоростью c 1в тепломеханический агрегат 2 (двигатель, паровой котел, компрессор и т. д.). Здесь каждый килограмм рабочего тела в общем случае может получать от внешнего источника теплоту q и совершать техническую работу l тех, например, приводя в движение ротор турбины, а затем удаляется через выхлопной патрубок со скоростью с 2, имея параметры Т2 , p 2, v 2. Если в потоке мысленно выделить замкнутый объем рабочего тела и наблюдать за изменением его параметров в процессе перемещения, то для описания его поведения будут пригодны все полученные выше термодинамические соотношения и, в частности, первый закон термодинамики в обычной записи: Внутренняя энергия есть функция состояния рабочего тела, поэтому значение определяется параметрами рабочего тела при входе (сечение потока I), а значение — параметрами рабочего тела при выходе из агрегата (сечение II). Работа расширения l совершается рабочим телом на поверхностях, ограничивающих выделенный движущийся объем, т. е. на стенках агрегата и границах, выделяющих этот объем в потоке. Часть стенок агрегата неподвижна, и работа расширения на них равна нулю. Другая часть стенок специально делается подвижной (рабочие лопатки в турбине и компрессоре, поршень в поршневой машине), и рабочее тело совершает на них техническую работу При входе рабочее тело вталкивается в агрегат. Для этого нужно преодолеть давление p 1. Поскольку p 1=const, то каждый килограмм рабочего тела может занять объем лишь при затрате работы, равной Для того чтобы выйти в трубопровод 3, рабочее тело должно вытолкнуть из него такое же количество рабочего тела, ранее находившегося в нем, преодолев давление р 2, т. е. каждый килограмм, занимая объем v2 должен произвести определенную работу выталкивания Сумма Если скорость на выходе больше, чем на входе, то часть работы расширения будет затрачена на увеличение кинетической энергии рабочего тела в потоке, равное Наконец, в неравновесном процессе некоторая работа может быть затрачена на преодоление сил трения. Окончательно
Теплота, сообщенная каждому килограмму рабочего тела во время прохождения его через агрегат, складывается из теплоты Подставив полученные значения q и l в уравнение первого закона термодинамики, получим
Поскольку теплота трения равна работе трения, окончательно запишем:
Это и есть выражение первого закона термодинамики для потока, который можно сформулировать так: теплота, подведенная к потоку рабочего тела извне, расходуется на увеличение энтальпии рабочего тела, производство технической работы и увеличение кинетической энергии потока. В дифференциальной форме уравнение записывается в виде
Оно справедливо как для равновесных процессов, так и для течений, сопровождающихся трением. Выше было указано, что к замкнутому объему рабочего тела, выделенному в потоке, применимо выражение первого закона термодинамики для закрытой системы, т.е. Сравнивая это выражение с уравнением *, получим:
Величину Применим первый закон термодинамики к различным типам тепломеханического оборудования. Теплообменный аппарат (устройство, в котором теплота от жидкой или газообразной среды передается другой среде). Для него
Следует подчеркнуть, что для теплообменника, установленного в потоке, это выражение справедливо не только в изобарном процессе, но и в процессе с трением, когда давление среды уменьшается из-за сопротивления. Тепловой двигатель. Обычно
Величину Интегрируя уравнение
Сравнивая выражения (7.2) и (7.3), приходим к выводу, что
Таким образом, при
Рисунок 7.2 - Изображение располагаемой и технической работы в координатах p, v Компрессор. Если процесс сжатия газа в компрессоре происходит без теплообмена с окружающей средой ( В отличие от предыдущего случая здесь h 1< h 2, т.е. техническая работа в адиабатном компрессоре затрачивается на увеличение энтальпии газа. Сопла и диффузоры. Специально спрофилированные каналы для разгона рабочей среды и придания потоку определенного направления называются соплами. Каналы, предназначенные для торможения потока и повышения давления, называются диффузорами. Техническая работа в них не совершается, поэтому уравнение
С другой стороны, для объема рабочего тела, движущегося в потоке без трения, применимо выражение первого закона термодинамики для закрытой системы Приравняв правые части двух последних уравнений, получим
Так как длина сопла и диффузора невелика, а скорость течения среды в них достаточно высока, то теплообмен между стенками канала и средой при малом времени их контакта настолько незначителен, что в большинстве случаев им можно пренебречь и считать процесс истечения адиабатным (
Следовательно, ускорение адиабатного потока происходит за счет уменьшения энтальпии, а торможение потока вызывает ее увеличение. Проинтегрировав соотношение (7.4) и сравнив его с уравнением (7.5), получим, что для равновесного адиабатного потока т. е. располагаемая работа при адиабатном расширении равна располагаемому теплоперепаду. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.) |