|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Термометры сопротивления (терморезисторы)Термометры расширения Термометры широко применяют на практике. Почти все они основаны на тепловом расширении тел, точнее, на различном расширении разных тел. Эти тела могут быть твердыми, жидкими и газообразными. В зависимости от этого различают стеклянные жидкостные термометры и манометрические термометры. 1. Стеклянные жидкостные термометры Принцип работы стеклянных жидкостных термометров основан на расширении термометрической жидкости, заключенной в термометре, в зависимости от температуры. Стеклянные термометры подразделяются на термометры с вложенной шкалой и палочные. Термометр с вложенной шкалой (рис.1.2, а) состоит из стеклянного резервуара и припаянного к нему стеклянного капилляра. Вдоль капилляра расположена шкала, которая нанесена на пластине молочного стекла. Резервуар, капилляр и шкала размещены в стеклянной оболочке. Палочные стеклянные термометры (рис.1.2, б) состоят из толстостенных капилляров. Шкала термометра наносится на наружной поверхности капилляра. Наибольшее распространение в лабораторных исследованиях и в промышленности получили ртутные термометры, Разновидностью жидкостных термометров расширения являются электроконтактные ртутные термометры, применяемые для регулирования температуры или сигнализации о нарушении заданного температурного режима в пределах от –30 до 300 °С. Манометрические термометры В зависимости от вида термометрического вещества различают газовые, жидкостные и конденсационные термометры. Действие манометрических термометров основано на зависимости давления манометрического вещества в герметически замкнутом объеме от температуры. Газовые манометрические термометры. При этом методе измеряется изменение давления Р или объема V газа как функция температуры Т в соответствии с законом идеального газа PV=mRT. Причем масса m и величина R (абсолютная газовая постоянная) являются постоянными. Для этой цели используют газ, близкий к идеальному (гелий, азот, аргон). Конденсационные манометрические термометры работают по тому же принципу, что и жидкостные, и газовые термометры. Отличие их состоит в том, что чувствительный элемент частично заполнен жидкостью (конденсатом), а над конденсатом находится насыщенный пар этой же жидкости. Термометры сопротивления (терморезисторы) Электрическое сопротивление большинства материалов существенно изменяется с температурой. В данном случае это свойство используется в качестве принципа измерения температуры. Различают металлические (проводниковые) и полупроводниковые термометры сопротивления. У металлических проводников эта температурная зависимость связана со свободными электронами связи в металлической решетке. Чувствительный элемент термометра сопротивления называется терморезистором. 1. Металлические термометры сопротивления. Зависимость сопротивления металлических проводников от температуры может быть с весьма высокой точностью описана уравнением третьей степени. При обычных требованиях к точности ограничиваются квадратичной или даже линейной зависимостью Rt = R0 (1+at), где R0, Rt - величина сопротивления проводника в исходном состоянии, при 0 0С и при температуре t, 0С, соответственно, Ом; a - линейный температурный коэффициент сопротивления, 1/К. Платиновый терморезистор (состоит из двух или четырёх соединённых последовательно платиновых спиралей 2, к которым припаяны выводы Спирали помещают в каналы керамического каркаса. Спирали и выводы в каркасе крепят глазурью 4. Пространство между спиралями и каркасом засыпают керамическим порошком, который служит изолятором и создаёт подпружинивание спиралей. Медные терморезисторы представляют собой бескаркасную безындукционную намотку 3 из медной проволоки диаметром 0,08 мм, покрытую фторопластовой плёнкой 4. К намотке припаяны два вывода Никелевыетерморезисторы обладают высоким температурным коэффициентом и большим удельным сопротивлением, что позволяет получать малогабаритные термометры.
2. Полупроводниковые термометры сопротивления Имеются два различных типа терморезисторов: с отрицательным (NТС – терморезисторы) и положительным (РТС – терморезисторы, позисторы) температурным коэффициентом сопротивления. Для их изготовления применяют германий, медно-марганцевые (ММТ) и кобальто-марганцевые (КМТ) соединения, сплавы и окислы урана, серебра, никеля. Терморезисторы используют для регистрации изменений температуры в системах теплового контроля, пожарной сигнализации и др.
1.3 Термоэлектрические термометры
Для измерения весьма малых разностей температур применяют термобатареи - ряд последовательно соединенных термопар. В этом случае термо-ЭДС суммируется. Число спаев термобатареи может достигать нескольких сотен.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |