|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
История возникновения и развития информационных технологийИстория возникновения информационных технологий уходит своими корнями в глубокую древность. Первым этапом можно считать изобретение простейшего цифрового устройства – счетов. Счеты были изобретены совершенно независимо и практически одновременно в Древней Греции, Древнем Риме, Китае, Японии и на Руси. Счеты в Древней Греции назывались абак, то есть доска или еще «саламинская доска» (остров Саламин в Эгейском море). Абак представлял собой посыпанную песком доску с бороздками, на которых камешками обозначались числа. Первая бороздка означала единицы, вторая – десятки и т.д. Во время счета на любой из них могло набраться более 10 камешков, что означало добавлениеодного камешка в следующую бороздку. В Риме абак существовал в другом виде: деревянные доски заменили мраморными, шарики также делали из мрамора. В Китае счеты «суан-пан» немного отличались от греческих и римских. В их основе лежало не число десять, а число пять. В верхней части «суан-пан» находились ряды по пять косточек-единиц, а в нижней части – по две. Если требовалось, скажем, отразить число восемь, в нижней части ставили одну косточку, а в части единиц – три. В Японии существовало аналогичное устройство, только название было уже «серобян». На Руси счеты были значительно проще – кучка единиц и кучки десятков с косточками или камешками. Но в XV в. получит распространение «дощаный счет», то есть применение деревянной рамки с горизонтальными веревочками, на которых были нанизаны косточки. Обычные счеты были родоначальниками современных цифровых устройств. Однако, если одни из объектов окружающего материального мира поддавались непосредственному счетному, поштучному исчислению, то другие требовалипредварительного измерения числовых величин. Соответственно, исторически сложились два направления развития вычислений и вычислительной техники: цифровое и аналоговое. Аналоговое направление, основанное на исчислении неизвестного физического объекта (процесса) по аналогии с моделью известного объекта (процесса), получило наибольшее развитие в период конца XIX – середины XX века. Основоположником аналогового направления является автор идеи логарифмического исчисления шотландский барон – Джон Непер, подготовившийв 1614 г. научный фолиант «Описание удивительной таблицы логарифмов». Джон Непер не только теоретически обосновал функции, но и разработал практическую таблицу двоичных логарифмов. Принцип изобретения Джона Непера заключается в соответствии логарифма (показателя степени, в которую нужно возвести число) заданному числу. Изобретение упростило выполнение операций умножения и деления, так как при умножении достаточно сложить логарифмы чисел. В 1617 г. Непер изобрел способ перемножения чисел с помощью палочек. Специальное устройство состояло из разделенных на сегменты стерженьков, которые можно было располагать таким образом, что при сложении чисел в прилегающих друг к другу по горизонтали сегментах получался результат умножения этих чисел. Несколько позднее англичанин Генри Бриггс составил первую таблицу десятичных логарифмов. На основе теории и таблиц логарифмов были созданы первые логарифмические линейки. В 1620 г. англичанин Эдмунд Гюнтер применил для расчетов на популярном в те времена пропорциональном циркуле специальную пластинку, на которую были нанесены параллельно друг другу логарифмы чисел и тригонометрических величин (так называемые «шкалы Гюнтера»). В 1623 г. Уильям Отред изобрел прямоугольную логарифмическую линейку, а Ричард Деламейн в 1630 г. – круговую. В 1775 г. библиотекарь Джон Робертсон добавил к линейке «бегунок», облегчающий считывание чисел с разных шкал. И, наконец, в 1851-1854 гг. француз Амедей Маннхейм резко изменил конструкцию линейки, придав ей почти что современный вид. Полное господство логарифмической линейки продолжалось вплоть до 20-30-х гг. XX века, пока не появились электрические арифмометры, которые позволяли проводить несложные арифметические вычисления с гораздо большей точностью. Логарифмическая линейка постепенно утратила свои позиции, но оказалась незаменимой для сложных тригонометрических вычислений и потому сохранилась и продолжает использоваться и в наши дни. Большинство людей, пользующихся логарифмической линейкой, успешно проводит типовые вычислительные операции. Однако, сложные операции расчета интегралов, дифференциалов, моментов функций и т. д., которые осуществляются в несколько этапов по специальным алгоритмам и требуют хорошей математической подготовки, вызывают значительные затруднения. Все это обусловило появление в свое время целого класса аналоговых устройств, предназначенных для расчета конкретных математических показателей и величин пользователем, не слишком искушенным в вопросах высшей математики. В начале-середине XIX века были созданы: планиметр (вычисление площади плоских фигур), курвиметр (определение длины кривых), дифференциатор, интегратор, интеграф (графические результаты интегрирования), интегример (интегрирование графиков) и др. устройства. Автором первого планиметра (1814 г.) является изобретатель Германн. В 1854 г. появился полярный планиметр Амслера. С помощью интегратора фирмы «Коради» вычислялись первый и второй моменты функции. Существовали универсальные наборы блоков, например, комбинированный интегратор КИ-3, из которых пользователь в соответствии с собственными запросами, мог выбрать необходимое устройство. Цифровое направление развития техники вычислений оказалось более перспективным и составляет сегодня основу компьютерной техники и технологии. Еще Леонардо да Винчи в начале XVI в. создал эскиз 13-разрядного суммирующего устройства с десятизубными кольцами. Хотя работающее устройство на базе этих чертежей было построено только в XX в., все же реальность проекта Леонардо да Винчи подтвердилась. В 1623 г. профессорВильгельм Шиккард в письмах И. Кеплеру описал устройство счетной машины, так называемых «часов для счета». Машина также не была построена, но сейчас на основе описания создана работающая ее модель. Первая построенная механическая цифровая машина, способная суммировать числа с соответствующим увеличением разрядов, была создана французским философом и механиком Блэзом Паскалем в 1642 г. Назначением этой машины было облегчить работу отца Б. Паскаля – инспектора по сбору налогов. Машина имела вид ящика с многочисленными шестернями, среди которых находилась основная расчетная шестерня. Расчетная шестерня при помощи храпового механизма соединялись с рычагом, отклонение которого позволяло вводить в счетчик однозначные числа и проводить их суммирование. Проводить вычисления с многозначными числами на такой машине было достаточно сложно. В 1657 г. два англичанина Р. Биссакар и С. Патридж совершенно независимо друг от друга разработали прямоугольную логарифмическую линейку. В неизменном виде логарифмическая линейка существует и по сей день. В 1673 г. известный немецкий философ и математик Готфрид Вильгельм Лейбниц изобрел механический калькулятор – более совершенную счетную машину, способную выполнять основные арифметические действия. При помощи двоичной системы счисления машина могла складывать, вычитать, умножать, делить и извлекать квадратные корни. В 1700 г. Шарль Перро издал книгу своего брата «Сборник большого числа машин собственного изобретения Клода Перро». В книге описывается суммирующая машина с зубчатыми рейками вместо зубчатых колес под названием «рабдологический абак». Название машины состоит из двух слов: древнего «абак» и «рабдология» – средневековая наука о выполнении арифметических операций с помощью маленьких палочек с цифрами. Готфрид Вильгейм Лейбниц в 1703 г., продолжая серию своих работ, пишет трактат «Explication de I'Arithmetique Binaire» об использовании двоичной системы счисления в вычислительных машинах. Позже, в 1727 г. на основе работ Лейбница была создана счетная машина Джакоба Леопольда. Немецкий математик и астроном Христиан Людвиг Герстен в 1723 г.создал арифметическую машину. Машина высчитывала частное и число последовательных операций сложения при умножении чисел. Кроме того, была предусмотрена возможность контроля за правильностью ввода данных. В 1751 г. француз Перера на основе идей Паскаля и Перро изобретает арифметическую машину. В отличие от других устройств она была компактнее, так как ее счетные колеса располагались не на параллельных осях, а на единственной оси, проходившей через всю машину. В 1820 г. состоялся первый промышленный выпуск цифровых счетных машин арифмометров. Первенство принадлежит здесь французу Тома де Кальмару. В России к первым арифмометрам данного типа относятся самосчеты Буняковского (1867 г.). В 1874 г. инженер из Петербурга Вильгодт Однер значительно усовершенствовал конструкцию арифмометра, применив для ввода чисел колеса с выдвижными зубьями (колеса «Однера»). Арифмометр Однера позволял проводить вычислительные операции со скоростью до 250 действий с четырехзначными цифрами за один час. Вполне возможно, что развитие цифровой техники вычислений так и осталось бы на уровне малых машин, если бы не открытие француза Жозефа Мари Жаккара, который в начале XIX века применил для управления ткацким станком карту с пробитыми отверстиями (перфокарту). Машина Жаккара программировалась при помощи целой колоды перфокарт, каждая из которых управляла одним ходом челнока так, что при переходе к новому рисунку, оператор заменял одну колоду перфокарт другой. Учёные попытались использовать это открытие для создания принципиально новой счётной машины, выполняющейоперации без вмешательства человека. В 1822 г. английский математик Чарльз Бэббидж создал программно-управляемую счетную машину, представляющую собой прототип сегодняшних периферийных устройств ввода и печати. Она состояла из вращаемых вручную шестеренок и валиков. В конце 80-х гг. XIX века сотрудник национального бюро переписи населения США Герман Холлерит сумел разработать статистический табулятор, способный автоматически обрабатывать перфокарты. Создание табулятора положило начало производству нового класса цифровых счётно-перфорационных (счётно-аналитических) машин, которые отличались от класса малых машин оригинальной системой ввода данных с перфокарт. К середине XX века счетно-перфорационныемашины выпускались фирмами IBM и Remington Rand в виде достаточно сложных перфокомплексов. Они включали перфораторы (набивка перфокарт), контрольные перфораторы (повторная набивка и контроль несовпадения отверстий), сортировочные машины (раскладка перфокарт по группам в соответствии с определенными признаками), раскладочные машины (более тщательная раскладка перфокарт и составление таблиц функций), табуляторы (чтение перфокарт, вычисление и вывод на печать результатов расчета), мультиплееры (операции умножения для чисел, записанных на перфокартах). Лучшие модели перфокомплексов обрабатывали до 650 карт в минуту, а мультиплеер в течение часа умножал 870 восьмизначных чисел. Наиболее совершенная модель электронного перфоратора Model 604 фирмы IBM, выпущенная в 1948 г., имела программируемую панель команд обработки данных и обеспечивала возможность проведения до 60 операций с каждой перфокартой. В начале XX века появились арифмометры с клавишами для ввода чисел. Повышение степени автоматизации работы арифмометров позволило создать счетные автоматы, или, так называемые, малые счетные машины с электроприводом и автоматическим выполнением за час до 3 тысяч операций с трех- и четырехзначными цифрами. В промышленном масштабе малые счетные машины в первой половине XX века выпускались компаниями Friden, Burroughs, Monro и др. Разновидностью малых машин являлись бухгалтерские счетно-записывающие и счетно-текстовые машины, выпускавшиеся в Европе фирмой Olivetti, а в США –- National Cash Register (NCR). В России в этот период были широко распространены «Мерседесы» – бухгалтерские машины, предназначенные для ввода данных и расчета конечных остатков (сальдо) по счетам синтетического учета. Основываясь на идеях и изобретениях Бэббиджа и Холлерита, профессор Гарвардского университета Говард Эйкен смог создать в 1937 – 1943 гг. вычислительную перфорационную машину более высокого уровня под названием «Марк-1», которая работала на электромагнитных реле. В 1947 г. появилась машина данной серии «Марк-2», содержащая 13 тысяч реле. Примерно в этот же период появились теоретические предпосылки и техническая возможность создания более совершенной машины на электрических лампах. В 1943 г. к разработке такой машины приступили сотрудники Пенсильванского университета (США) под руководством Джона Мочли и Проспера Эккерта, с участием знаменитого математика Джона фон Неймана. Результат их совместных усилий ламповая вычислительная машина ENIAC (1946 г.), которая содержала 18 тысяч ламп и потребляла 150 кВт электроэнергии. В процессе работы над ламповой машиной Джон фон Нейман опубликовал доклад (1945 г.), являющийся одним из наиболее важных научных документов теории развития вычислительной техники. В докладе были обоснованы принципы устройства и функционированияуниверсальных вычислительных машин нового поколения компьютеров, которые вобрали в себя все лучшее, что было создано многими поколениями ученых, теоретиков и практиков. Это привело к созданию компьютеров, так называемого, первого поколения. Они характерны применением вакуумно-ламповой технологии, систем памяти на ртутных линиях задержки, магнитных барабанов и электронно-лучевых трубок Вильямса. Данные вводились с помощью перфолент, перфокарт и магнитных лент с хранимыми программами. Использовались печатающие устройства. Быстродействие компьютеров первого поколения не превышало 20 тыс. операций в секунду. Далее развитие цифровой техники вычислений происходило быстрыми темпами. В 1949 г. по принципам Неймана английским исследователем Морисом Уилксом был построен первый компьютер. Вплоть до середины 50-х гг. в промышленном масштабе выпускались ламповые машины. Однако, научные исследования в области электроники открывали все новые перспективы развития. Ведущие позиции в этой области занимали США. В 1948 г. Уолтер Браттейн, Джон Бардин из компании AT&T изобрели транзистор, а в 1954 г. Гордон Тип из компании Texas Instruments применил для изготовления транзистора кремний. С 1955 года стали выпускаться компьютеры на транзисторах, имеющие меньшие габариты, повышенное быстродействие и пониженное потребление энергии в сравнении с ламповыми машинами. Сборка компьютеров проходила вручную, под микроскопом. Применение транзисторов ознаменовало переход к компьютерам второго поколения. Транзисторы заменили электронные лампы и компьютеры стали более надежными и быстрыми(до 500 тысяч операций в секунду). Усовершенствовались и функциональные устройства – работы с магнитными лентами, памяти на магнитных дисках. В 1958 г. были изобретены: первая интервальная микросхема (Джек Килби -Texas Instruments) и первая промышленная интегральная микросхема (Chip), автор которой Роберт Нойс основал впоследствии (1968 год) всемирно известную фирму Intel (INTegrated ELectronics). Компьютеры на интегральных микросхемах, выпуск которых был налажен с 1960 года, были еще более скоростными и малогабаритными. В 1959 г. исследователи фирмы Datapoint сделали важный вывод о том, что компьютеру необходим центральный арифметико-логический блок, который мог бы управлять вычислениями, программами и устройствами. Речь шла о микропроцессоре. Сотрудники Datapoint разработали принципиальные технические решения по созданию микропроцессора и совместно с фирмой Intel в середине 60-х годов стали осуществлять его промышленную доводку. Первые результаты были не совсем удачными: микропроцессоры Intel работали гораздо медленнее, чем ожидалось. Сотрудничество Datapoint и Intel прекратилось. В 1964 г. были разработаны компьютеры третьего поколения с применением электронных схем малой и средней степени интеграции (до 1000 компонентов на кристалл). С этого времени стали проектировать не отдельный компьютер, а скорее целое семейство компьютеров на базе применения программного обеспечения. Примером компьютеров третьего поколения можно считать созданные тогда американский IBM 360, а также советские ЕС 1030 и 1060. В конце 60-х гг. появились мини-компьютеры, а в 1971 г. – первый микропроцессор. Годом позже компания Intel выпускает первый широко известный микропроцессор Intel 8008, а в апреле 1974 г. – микропроцессор второго поколения Intel 8080. С середины 70-х гг. были разработаны компьютеры четвертого поколения. Они характерны использованием больших и сверхбольших интегральных схем (до миллиона компонентов на кристалл). Первые компьютеры четвертого поколения выпустила фирма Amdahl Corp. В этих компьютерах использовались быстродействующие системы памяти на интегральных схемах емкостью несколько мегабайт. При выключении данные оперативной памяти переносились на диск. При включении проходила самозагрузка. Производительность компьютеров четвертого поколения – сотни миллионов операций в секунду. Также в середине 70-х появились первые персональные компьютеры. Дальнейшая история компьютеров тесно связана с развитием микропроцессорной техники. В 1975 г. на основе процессора Intel 8080 был создан первый массовый персональный компьютер Альтаир. К концу 70-х гг., благодаря усилиям фирмы Intel, разработавшей новейшие микропроцессоры Intel 8086 и Intel 8088, возникли предпосылки для улучшения вычислительных и эргономических характеристик компьютеров. В этот период крупнейшая электротехническая корпорация IBM включилась в конкурентную борьбу на рынке и попыталась создать персональныйкомпьютер на основе процессора Intel 8088. В августе 1981 г. появился компьютер IBM PC, быстро завоевавший огромную популярность. Удачная конструкция IBM PC предопределила его использование в качестве стандарта персональных компьютеров конца XX в. С 1982 г. ведутся разработки компьютеров пятого поколения. Их основой является ориентация на обработку знаний. Ученые уверены в том, что обработка знаний, свойственная только человеку, может вестись и компьютером с целью решения поставленных проблем и принятия адекватных решений. В 1984 г. фирма Microsoft представила первые образцы операционной системы Windows. Американцы до сих пор считают это изобретение одним из выдающихся открытий XX в. Важным оказалось предложение, сделанное в марте 1989 г. сотрудником международного европейского научного центра (CERN) Тимом Бернерс-Ли. Суть идеи состояла в создании новой распределенной информационной системы под названием World Wide Web. Информационная система на базе гипертекста смогла бы объединить информационныересурсы CERN (базы данных отчетов, документацию, почтовые адреса и т.д.). Проект был принят в 1990 г.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.) |