|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Экспликация — явное определение или уточнение значения ясмысла отдельных, широко используемых в науке терминов, как правило имеющих не одно, а несколько значении (например «вероятность», «детерминизм», «закон», «формализация», «вывод» ит. д., ит. п.).
Экстраполяция — экстенсивное приращение знания путем распространения следствий какого-либо тезиса или теории с одной сферы описываемых явлений на другие сферы (предметные области).
Тема 5
Бифуркация — нарушение устойчивости эволюционного режима системы, приводящее к возникновению после точки бифуркации квантового спектра альтернативных виртуальных сценариев эволюции. Бифуркации возникают в условиях нелинейности и открытости системы. Вследствие потери системной устойчивости в зоне бифуркации фундаментальную роль приобретают случайные факторы. Это обстоятельство имеет важное значение в процессах социокультурной динамики и приводит к новому, нелинейному пониманию соотношения необходимости и свободы воли. В рамках нелинейного мышления свободу следует понимать не как осознанную необходимость, а как возможность выбора среди виртуальных альтернатив, но одновременно и нравственную ответственность за этот выбор.
Большой Взрыв — сингуляртность пространства — времени, приведшая к возникновению 13,7 миллиардов лет назад и последующей эволюции нашей Вселенной. Согласно стандартной космологической модели, Вселенная возникла как результат этой сингулярности. Теоретическим обоснованием этой теории явилось решение нестационарных уравнений относительности, полученное в 1922 г. А.А. Фридманом. В пользу этой теории свидетельствуют два экспериментальных факта. Во-первых, это открытие разбегания далеких галактик, сделанное в 1929 г. на основании регистрации красного смещения в спектрах их излучений. Во-вторых, это открытие реликтового фонового излучения с температурой 3,5 ° К, равномерно заполняющего космос. Это открытие было сделано в 1964 г. А. Пен-зисомиР. Вильсоном. В 1948 г. Г. Гамов теоретически показал, что если на ранних стадиях после Большого взрыва Вселенная была очень горячей, то впоследствии в процессе ее расширения свободный фотонный газ должен быд охладиться примерно до 5°К, что и наблюдалось на экспериментах. Согласно современным космологическиг.1 теориям, возникновение Вселенной явилось следствием фазового перехода квантового вакуума. Ее первоначальные размеры соответствовали планковским масштабам— 10~33см, 10~43с А. Гут, С. Хокинг, А.Д. Линде показали, что в промежуток времени от 10~34до 10"32с Вселенная испытывала стадию сверхбыстрого, или инфляционного, расширения, когда ее размеры увеличились в 1030 раз. В процессе расширения Вселенной началось формирование элементарных частиц, а ко времени порядка 100 миллионов лет звезд и галактик.
Вакуум — в житейском понимании пустота, отсутствие реальных частиц. Но даже в классическом понимании сосуд, из которого откачали воздух, заполнен электромагнитным излучением, поступающим с его стенок. В квантовой механике вводится понятие физического вакуума как основного состояния квантовых полей, обладающих минимальной энергией и нулевыми значениями импульса, углового момента, электрического заряда, спина и др. Физический, или квантовый, вакуум также не является пустотой: он содержит виртуальные частицы, которые рождаются в нем за промежутки времени порядка 10'ис как следствие квантовых флуктаций в соответствии с соотношениями неопределенности Гейзенберга. Хотя индивидуально виртуальные частицы (электроны, протоны и др.) наблюдать нельзя, как ансамбль они оказывают при-борно регистрируемое воздействие на свойства реальных частиц.
Вакуум — фундаментальное понятие, т. к. его свойства определяют свойства всех относительных состояний материи. Все, что происходит в нашем мире, обусловлено в конечном счете измерениями геометрических характеристик квантового вакуума.
Гносеология — общее учение о познании, его структуре, методах, принципах, закономерностях функционирования и развития.
Квантовая механика — теория, описывающая свойства и законы движения физических объектов, для которых размерность действия (эрг х с) сопоставима с планковским масштабомh = 6,62х 10~2' эргхс. Этому условию удовлетворяют микрочастицы, а потому можно сказать, что квантовая механика — это наука, описывающая свойства микромира.Квантовая механика включает в себя систему специальных понятий и соответствующий им математический аппарат. Законы квантовой механики образуют фундамент наук о строении вещества. Методы квантовой механики позволили решить большое количество научных задач: расшифровка атомных спектров, объяснение периодической системы элементов Д.И. Менделеева, строение и свойства атомных ядер, теория фотоэффекта, физики твердого тела и полупроводников, ядерные и термоядерные реакции и др. В области макромасштабов уравнения квантовой механики переходят в уравнения обычной классической механики.
Космология — наука, изучающая Вселенную как единое целое, ее строение и эволюцию.Термин «космология» образован из греческих kosmos — мир, гармония и logos — учение, слово. Теоретическим базисом космологии является физическая теория, а ее экспериментальные методы основаны на использовании астрономических наблюдений и специальных космических аппаратов. Первой научной системой мира явилась геоцентрическая система, разработанная К. Птолемеем (II в. н. э.). В XVI в. Н. Коперник проанализировал недостатки этой модели и обосновал необходимость перехода к гелиоцентрической системе. Открытие Коперника стимулировало развитие физической теории. Впервые использовав телескоп для наблюдения небесных явлений, Г. Галилей получил многочисленные экспериментальные свидетельства в пользу гелиоцентрической системы мира. И. Ньютон открыл закон всемирного тяготения и разработал классическую механику, с помощью которой удалось теоретически описать большинство небесных явлений. В начале 1922 г. А.А. Фридман нашел нестационарные решения общей теории относительности, а в 1929 г. Э. Хаббл открыл эффект красного смещения в спектрах излучения Далеких галактик. Из открытий Фридмана и Хаббла следовало, что Вселенная расширяется, причем этот процесс начался 13,7 миллиардов лет назад в процессе так называемого Большого Взрыва, когда Вселенная имела микроскопические размеры.Современная космология опирается на мощную экспериментальную базу: радиоастрономические, инфракрасные, рентгеновские и другие методы наблюдения. При исслед0. вании планет и их спутников, астероидов и комет активц0 используются специализированные космические зонду оснащенные богатой измерительной аппаратурой. Разра1 ботаны космические аппараты для наблюдений с окод0. земной орбиты, крупнейшим из которых является телескоп «Хаббл». Открытия в области космологии для развития физической теории имеют принципиальное значение для совершенствования современного миропредставления.
Натурфилософия — общее учение о природе, законах ее существования и развития как одной из «сфер» бытия, существенно отличающегося от других его «сфер» — общества, культуры, сознания, человека.
Научная картина мира — совокупность общих представлений науки определенного исторического периода о фундаментальных законах строения и развития объективной реальности.
Нелинейная наука — научное направление, исследующее процессы в открытых нелинейных системах. Нелинейная наука включает в себя комплекс близко родственных смежных научных дисциплин: термодинамику необратимых процессов (И. Пригожий), теорию катастроф (Р. Том, В.И. Арнольд), синергетику, или теорию самоорганизующихся систем (Г. Хакен, СП. Курдюмов). Методы нелинейной науки находят широкое применение не только в естественно-научных исследованиях, но также в сфере гуманитарных научных дисциплин (социо- и фу-туросинергетика, демография, образование и др.). По своему влиянию на культуру и развитие цивилизации в XX в. нелинейная наука занимает третье — в порядке очередности, но не по важности — место вслед за теорией относительности и квантовой механикой. Нелинейная наука послужила основой существенного уточнения современной общенаучной парадигмы и привела к возникновению нового феномена в рамках системы научного миропредставления — нелинейного, или синер-гетического, мышления. Онтология — философское учение о бытии, его основных видах, подсистемах, «сферах», общих закономерностях их строения, функционирования, динамики и развития.
Самоорганизация — фундаментальное понятие синергетики, означающее упорядочивание, т. е. переход от хаоса к структурированному состоянию, происходящее спонтанно в открытых нелинейных системах. Именно свойства открытости и нелинейности являются причиной этого процесса. Открытость — это свойство систем, проявляющееся в их способности к обмену веществом, энергией и информацией с окружающей средой, а нелинейность — многовариантность путей эволюции. Математически нелинейность проявляется в наличии в системе уравнений величин в степенях выше первой либо в зависимости коэффициентов от свойств среды. Процесс, альтернативный самоорганизации — автодезорганизация, или диссипация. Диссипация — это процесс рассеяния энергии, ее превращение в менее организованные формы— в конечном счете в тепло. Эти процессы диструкции могут иметь разную форму: диффузия, вязкость, трение, теплопроводность и т. д. Самоорганизация может вести к переходу системы в устойчивое состояние — аттрактор (attrahere на латыни означает притяжение). Отличительное свойство состояния аттрактора состоит в том, что оно как бы притягивает к себе все прочие траектории эволюции системы, определяемые различными начальными условиями. Если система попадает в конус аттрактора, она неизбежно эволюционирует к этому состоянию, а все прочие промежуточные состояния автоматически диссипируют, затухают.
Теория относительности — наука, основной смысл которой состоит в утверждении: в нашем мире не происходит ничего, кроме кручения пространства и изменения его кривизны. Возникновение теории относительности связано с неудачей обнаружить движение Земли относительно эфира, который, согласно представлениям классической физики, должен был заполнять космическое пространство. Соответствующий эксперимент был в 1887 г. поставлен А. Майкельсоном и Э. Морли и неоднократно повторен впоследствии. Чтобы объяснить этот результат, X. Лоренц выдвинул гипотезу о сокращении длины тел вдоль направления их движения. Но это была всего лишь теория ad hoc. Решение проблемы было найдено в 1905 г. А. Эйнштейном в его работе по специальной теории относительности. В основе этой теории лежат два постулата: 1. Все законы физики имеют один и тот же вид во всех инерциональных системах отсчета. 2. Во всех системах скорость света постоянна. Развивая эту теорию, в 1918 г. Г. Минковский показал, что свойства нашей Вселенной следует описывать вектором в четырехмерном пространстве-времени. В 1916 г. Эйнштейн сделал следующий шаг и опубликовал общую теорию относительности (ОТО) — фактически теорию гравитации. Причиной тяготения, согласно этой теории, является искривление пространства вблизи массивных тел. В качестве математического аппарата в ОТО использован тензорный анализ. Из теории относительности следует род важных следствий. Во-первых, закон эквивалентности массы и энергии. Во-вторых, отказ от гипотез о мировом эфире и абсолютных пространстве и времени. В-третьих, эквивалентность гравитационной и инерционной масс. Теория относительности нашла многочисленные экспериментальные подтверждения и используется в космологии, физике элементарных частиц, ядерной технике и др. Торсионная физика — наука о торсионных полях, обусловленных кручением пространства (torsion означает кручение). Впервые задача кручения пространства на уровне уравнений ОТО была исследована в 1922 г. Э. Картаном. Из его теории следовало, что константа торсионного взаимодействия должна быть пренебрежительно мала. Однако в теории Картана допущена оплошность: отсутствует угловая система координат. Это упущение в 1980 г. было исправлено Г.И. Шиповым, который построил теорию физического вакуума с использованием угловых координат и коэффициентов кручения Г, Риччи. Эта теория позволила устранить ограничения, полученные Картаном. Альтернативную теоретическую модель торсионного поля предложил А.Е. Акимов. В этой модели использовано решение релятивистского квантового уравнения, полученное П. Дираком в 1929 г. Используя результаты теории Дирака, Акимов предположил, что квантовый вакуум содержит волновые свертки электронов и позитронов, обладающие нулевыми значениями массы, заряда и спина. Возмущение вакуума, по спину, вызванное внешним источником, и приводит к возникновению нового вида фундаментальных взаимодействий — торсионных полей. Кручение физического пространства — столь же фундаментальное свойство нашего мира, как и его искривление, предсказываемое теорией относительности. Существование торсионных полей подтверждено в многочисленных сериях экспериментов. Разработаны и получили практическое применение полупромышленные торсионные технологии производства улучшенных материалов. Физика — наука, изучающая фундаментальные и наиболее общие свойства и законы движения объектов материаль ного мира. Понятия физика и физические законы — основа всего естествознания. Термин «физика» (от греческого physis — природа) введен в науку Аристотелем. Развитие физики как современной науки началось после обоснования Н. Коперником гелиоцентрической системы мира: физика Аристотеля противоречила этой системе. Принципиальной важности шаг сделан Г. Галилеем, который превратил физику в экспериментальную науку. И. Ньютон ввел в физическую теорию математический аппарат изобретенного им (и независимо от него Г. Лейбницем) дифференциального и интегрального исчисления. Используя синтез экспериментальных и теоретических методов, Ньютон создал классическую механику, которая к началу XIX в. приобрела современную форму. Целью физики является формулировка общих законов природы и объяснение конкретных явлений. Основные разделы физики: классическая механика, термодинамика и статистическая физика, теория электромагнетизма, теория относительности, квантовая механика. Физика служит научной основой большого числа технических приложений (гидромеханика, теория тепломассообмена, техническая механика, микроэлектроника и др.).
Тема 6
Индекс цитирования (Science Citation Index, —SCI) —система Филадельфийского института научной информации, в основу которой положены связи между документами по прямым, обратным и перекрестным ссылкам (цитированию). Традиция систематических ссылок на работы предшественников сформировалась в европейской науке в середине XIX в. как показатель структурной интеграции научного знания и профессионализации научной Деятельности. SCI как непрерывно пополняемая система информационных баз данных по всем областям современной науки была создана под руководством Ю. Гарфилда в начале 1960 гг. и реализована параллельно на электронных и «бумажных» носителях. Информационную основу индекса цитирования составляют три массива, объединяющие базы данных различных групп дисциплин и учитывающие специфику организации знания в каждой из них: индекс цитирования естественных наук (собственно Science Citation Index — SCI), индекс цитирования социальных наук (Social Science Citation Index — SSCI) и индекс цитирования в гуманитарных науках, литературе и искусстве (Arts and Humanities Citation Index — A&HCI). Наряду с этими главными массивами в индекс цитирования входит еще значительное число специализированных указателей, объединяющих материалы конференций и симпозиумов, обзорных изданий и т. п. В настоящее время индекс цитирования признан одной из самых эффективных мировых систем научной информации. Структура индекса цитирования позволяет ему выполнять довольно широкий спектр функций, главными из которых являются следующие: информационный поиск для обслуживания индивидуальных исследователей и научных организаций; использование связей между публикациями для выявления оценка качества публикаций и их авторов научным сообществом. Содержание индекса цитирования, в свою очередь, является объектом интенсивных исследований специалистов по социологии науки, наукометрии и науковедению. Периодические дискуссии возникают по поводу адекватности оценок отдельных публикаций и их авторов с помощью методов, основанных на данных о цитировании. Междисциплинарные исследования — организация исследовательской деятельности, предусматривающая взаимодействие в изучении одного и того же объекта представителей различных дисциплин. Внимание к междисциплинарным исследованиям и даже выделение их в специальный тип исследовательской деятельности относится ко второй половине XX в., хотя обсуждение различных аспектов междисциплинарного взаимодействия традиционно привлекало исследователей науки, историков и философов науки. В настоящее время междисциплинарные исследования рассматриваются прежде всего как проблема исследовательскои практики и перевода ее результатов в систему знания. Практический характер задачи определяет и постановку проблематики как в общем виде, так и в каждом конкретном случае. Успешное осуществление междисциплинарных исследований предполагает одновременное решение трех видов проблем: методологической (формирование предмета исследований, в котором объект был бы отражен таким образом, чтобы его можно было изучать средствами всех участвующих дисциплин, а полученные в ходе исследований результаты могли уточнять и совершенствовать исходное изображение); организационной (создание сети коммуникаций и взаимодействия исследователей, с тем чтобы они могли профессионально участвовать в получении и обсуждении, а также привлекать к нему своих коллег из соответствующих дисциплин); информационной (обеспечение передачи прикладных результатов междисциплинарного исследования в практику принятия решений и их технологического воплощения и одновременно передачу собственно научных результатов, полученных участниками, для экспертизы в системы дисциплинарного знания). Практика реализации крупных междисциплинарных проектов, где вся эта проблематика вынужденно формулируется в явной форме, позволила накопить уже довольно большой опыт. Ключевую роль играет методологическое обеспечение междисциплинарных исследований, которое предполагает создание предметной конструкции, функционально аналогичной предметной конструкции дисциплины. Поскольку предмет исследования невозможно «сложить» из его дисциплинарных изображений, акцент делается на развитии описаний совокупностей и массивов эмпирических данных, их структуризации и превращения баз данных в базы знаний. В условиях все большей глобализации науки особое значение приобретает комплекс проблем, связанных с передачей результатов крупных междисциплинарных исследовательских проектов.
Научная дисциплина (от лат. disciplina — учение) — базовая форма организации профессиональной науки, объединяющая на предметно-содержательном основании области научного знания в сообщество, занятое его производством, обработкой и трансляцией, а также механизмы развития и воспроизводства соответствующей отрасли науки как профессии. Представление о научной Дисциплине используется как максимальная аналитичес кая единица исследования науки в работах по социолога» науки, науковедению, истории, философии, экономике науки и научно-технического прогресса. Дисциплинарная форма организации науки проявилась в том что она оказалась инвариантной относительно социально-экономического и культурного окружения и в настоящее время практически не имеет организационных альтернатив. Более того, по дисциплинарному принципу строится организация знания и система подготовки специалистов во всех сферах профессиональной деятельности (к примеру медицина, инженерное дело, искусство), вынужденных в процессе передачи опытановым поколениям специалистов оперировать с обработкой и трансляцией больших массивов знания. Несмотря на то, что конкретные события и процессы, определяющие существование дисциплины, рассредоточены в пространстве, на значительных временных интервалах и протекают в различном социокультурном и организационном окружении, дисциплина обладает механизмами, обеспечивающими ее устойчивость и инвариантность. Столь высокая эффективность дисциплинарной организации напрямую связана с постоянной интенсивной работой по поддержанию и развитию организационной структуры дисциплины во всех ее аспектах (организация знания, отношений в сообществе, подготовка научной смены, взаимоотношение с другими институтами и пр.), причем в эту работу вовлечены практически все участники дисциплинарного сообщества, какой бы конкретной научной или научно-организационной деятельностью они ни занимались в данный момент. Для осуществления этой работы в истории науки сформировались специальные механизмы, которые постоянно совершенствуются и развиваются.
Научная коммуникация — совокупность видов профессионального общения в научном сообществе, один из главных механизмов развития науки, способов осуществления взаимодействия исследователей и экспертизы полученных результатов. Массированное изучение научных коммуникаций социологами, психологами, специалистами по информатике и др-в конце 50-х — начале 60-х гг. было связано с поиском возможности интенсифицировать исследовательскую деятельность, справиться с так называемым «информационным взрывом», удовлетворить отчетливую потребность в организационной перестройке американской науки в послевоенных условиях. При этом коммуникационную интерпретацию получили практически все информационные процессы, происходящие в современной науке, начиная с массива дисциплинарных публикаций и важнейших информационных собраний (конференции, симпозиумы, конгрессы...) и функционирования мощных систем научно-технической информации и кончая личными контактами ученых по поводу мелких эпизодов исследовательской деятельности. Изучение коммуникаций в науке имело большое методологическое значение, так как в них удалось свести в единую картину данные, полученные в ходе эпистемологических, социологических, информационных и социально-психологических исследований. Были выявлены основные коммуникационные структуры, которые позволяют в считанные недели подключить к срочной экспертизе важного исследовательского результата практически всех участников мирового научного сообщества данной дисциплины. Эти, как правило, двухуровневые структуры включают сравнительно небольшую группу признанных лидеров, находящихся в постоянном деловом общении, их сотрудников и аспирантов, получающих значительную часть информации через лидеров и обеспечивающих ее оперативное обсуждение. Была получена систематическая картина обработки знания сообществом на наименее изученном этапе — между получением результата и его публикацией. Процедуры и события экспертизы знания в предпубликационный период позволили существенно продвинуться в теоретическом и эмпирическом исследовании важнейших процессов творческого взаимодействия ученых. Впечатляющим прикладным результатом реализации этого подхода явилось создание в Филадельфийском институте научной информации системы указателей научных ссылок (Science Citation Index, Social Science Citation Index и т. п.) — одной из самых эффективных информационных систем современной науки.
Научное сообщество — совокупность ученых-профессионалов, Относительная автономность профессии в привлечении новых членов, их подготовке и контроле их профессионального поведения. Заинтересованность социального окружения профессии в продукте деятельности ее членов (новом знании и владеющих им специалистах), гарантирующая как существование профессии, так и действенность профессиональных институтов Наличие внутри профессии форм вознаграждения, выступающих достаточным стимулом для специалистов обеспечивающих их высокую мотивацию относительно профессиональной карьеры в различных социально-культурных окружениях. Поддержание инфраструктуры, гарантирующей координацию и оперативное взаимодействие профессионалов и их объединений в режиме, обеспечивающем высокий темп развития системы научного знания.
«Невидимый колледж» — не институционализированная группа исследователей, согласованно работающая над общей проблематикой. Термин, введенный в науковедение Д. Берналом, был развернут Д. Прайсом в гипотезу о «невидимых колледжах» как коммуникационных объединениях, имеющих определенную, достаточно устойчивую структуру, функции и объем. Гипотеза о «невидимом колледже» была в 60-е— 70-е гг. подвергнута тщательному эмпирическому исследованию с неожиданно серьезными результатами. В ходе исследований не только подтвердилось наличие групп с совершенно определенными и достаточно устойчивыми параметрами, но и выяснились структурные, динамические закономерности развития таких групп как общей формы становления новых исследовательских направлений и специальностей. При этом отчетливо выделяются четыре фазы, через которые проходит научная специальность в своем становлении Нормальная фаза. Это период относительно разрозненной работы будущих участников и их небольших групп (часто группы аспирантов во главе с руководителем) над близкой по содержанию проблематикой. Общение идет, в основном, через формальные каналы, причем его участник еще не считают себя связанными друг с другом внутри какого-нибудь объединения. Фаза формирования и развития сети характеризуется интеллектуальными и организационными сдвигами, приводящим к объединению исследователей в единой системе коммуникаций. Участники формируют сеть устойчивых коммуникаций. Фаза интенсивного развития программы нового направления за счет действий сплоченной группы, которую образуют наиболее активные участники сети коммуникаций. Эта группа формулирует и отбирает для остронаправленной разработки небольшое число наиболее важных проблем (в идеальном случае одну проблему), в то время как остальные участники сети получают оперативную информацию о каждом достижении новой группировки, ориентируются на нее в планировании своих исследований и обеспечивают тем самым разработку проблематики по всему фронту. Фаза институционализации новой специальности. Научные результаты, полученные сплоченной группой, обеспечивают новому подходу признание сообщества, возникают новые направления исследований, базирующиеся на программе сплоченной группы. При этом, однако, сплоченная группа распадается, ее бывшие члены возглавляют самостоятельные группировки, каждая из которых разрабатывает по собственной программе группу специальных проблем. В каждой фазе развития «невидимого колледжа» самосознание участников формирующейся специальности претерпевает изменения следующим образом: романтический период (по времени совпадающий с нормальной фазой развития специальности); догматический (по времени совпадающий с фазой коммуникационной сети и сплоченной группы); академический (фаза специальности). В настоящее время специальному исследованию подвергается уже не гипотеза о «невидимом колледже», а конкретные данные о становлении научных специальностей и коммуникационных структур.
Социология науки — область социологических исследований, изучающих науку как социальный институт. Предметом изучения социологии науки выступают как внутренние отношения, обеспечивающие функционирование и развитие науки, так и взаимоотношения науки с другими институтами современного общества. Социология науки исследует существующие между учеными взаимоотношения, вопросы о том, каким образом люди становятся учеными, что заставляет их поддерживать нормы поведения, принятые в научном сообществе. Как и любая социологическая Дисциплина, социология науки является ветвью социологи, должна вносить свой вклад в развитие социологического знания в целом, имеет свою понятийную базу и свои Методы исследования.
Фундаментальные и прикладные исследования — типы исследований, различающиеся по своим социально-культурным ориентациям, по форме организации и трансляции знания, а соответственно, по характерным для каждого типа формам взаимодействия исследователей и их объединений. Все различия, однако, относятся к окружению, в котором работает исследователь, в то время как собственно исследовательский процесс — получение нового знания как основа научной профессии— в обоих типах исследований протекает абсолютно одинаково. Социальные функции фундаментальных и прикладных исследований в современном науковедении определяются следующим образом. Фундаментальные исследования направлены на усиление интеллектуального потенциала общества (страны, региона...) путем получения нового знания и его использования в общем образовании и подготовке специалистов практически всех современных профессий. Ни одна форма организации человеческого опыта не может заменить в этой функции науку, выступающую как существенная составляющая культуры. Прикладные исследования направлены на интеллектуальное обеспечение инновационного процесса как основы социально-экономического развития современной цивилизации. Знания, получаемые в прикладных исследованиях, ориентированы на непосредственное использование в других областях деятельности (технологии, экономике, социальном управлении и т. д.).
Тема 7
Информированное согласие — процедура, в ходе которой испытуемый знакомится с целями, условиями и опасностями, с которыми сопряжено его участие в исследовании, и соглашается (обычно в письменной форме) принять в нем участие
Оценка технологий — система методов, применяемых для определения того, насколько безопасна в применении будет та или иная новая технология, насколько она эффективна по сравнению с существующими технологиями и какие преимущества может принести ее применение.
Принцип предосторожности — принцип, применяемый при оценке новых технологий перед тем, как дается разрешение на их применение. В соответствии с этим принципом при возникновении разумных сомнений в безопасности новой технологии те, кто ее создал и намерен применять, должны представить убедительные аргументы в пользу ее безопасности.
Профессиональная ответственность — ответственность ученого перед научным сообществом за качество проводимых им исследований и получаемых результатов, за добросовестное выполнение других профессиональных ролей, за сохранение ценностей сообщества.
Социальная ответственность — ответственность отдельного ученого и научного сообщества перед обществом. Первостепенное значение при этом имеет безопасность применения тех технологий, которые создаются на основе достижений науки, предотвращение или минимизация возможных негативных последствий их применения, обеспечение безопасного как для испытуемых, так и для остального населения и для окружающей среды проведения исследований. Наряду с этим понятие социальной ответственности включает проведение исследований и экспертиз, направленных на решение стоящих перед обществом проблем.
Технологический императив — суждение, в соответствии с которым все то, что становится технически осуществимым, неизбежно будет реализовано. Это суждение, однако, не подтверждено какими бы то ни было эмпирическими данными; напротив, люди отказываются, часто по моральным соображениям, от осуществления многих практически достижимых проектов.
Этическая экспертиза — предваряющая исследование проверка того, связано ли исследование с риском для здоровья, благополучия и достоинства испытуемых, сопоставим ли этот риск с теми выгодами, которое им может принести участие в исследовании, обеспечено ли надлежащее информирование испытуемых и гарантирована ли добровольность их участия в исследовании. Этическая экспертиза предваряет каждое биомедицинское исследование, а в США и некоторых других странах — каждое исследование, в котором человек участвует в качестве испытуемого.
Этический комитет — структура, проводящая этическую экспертизу. В состав этического комитета входят ученые-специалисты в данной области знаний, но не те, кто так или иначе связан с исследователями; представители медицинского персонала; юристы, священники и т. п. — лица, не являющиеся профессионалами. Этический комитет должен быть независим от исследователей, проект которых подвергается экспертизе, и от администрации научного или медицинского учреждения, в котором намечается проводить исследование. Одобрение этического комитета является необходимым условием проведения исследования. Тема 8 Государственная научно-техническая политика — система мероприятий, планируемых и осуществляемых органами государственного управления в соответствии с их иерархией для обеспечения оптимальных условий динамичного, эффективного и экологически безопасного развития научно-технического потенциала страны (региона, области, округа и т. п.) Государство выступает по отношению к сфере науки и техники в следующих основных функциях: — как законодатель, устанавливающий правовые основы функционирования науки, в обществе в целом и конкретные нормы регулирования его научно-технического сегмента; - как крупный заказчик и потребитель новой технологической продукции, в том числе единичной и уникальной (на пример, крупные ускорители элементарных частиц, радио - как координатор совместной деятельности всех секторов науки, направленной на развитие научно-технического потенциала в целом, на повышение конкурентоспособности национальной науки на мировой арене; - как политическая сила, определяющая отношение всего общества к проблемам науки и техники. Лишь одна из перечисленных ролей государства — законотворческая присуща только ему. Во всех остальных случаях государство выступает как одно из действующих лиц наряду с частными фирмами и корпорациями, различными фондами, общественными организациями и политическими партиями.
Государственный сектор науки — совокупность научно-исследовательских учреждений, принадлежащих государству и финансируемых из государственного бюджета. Государственный сектор обеспечивает все те научные направления, которые будучи необходимыми обществу в целом, не разрабатываются частным капиталом по тем или иным причинам (высокая степень риска, необходимость концентрации очень больших ресурсов и т. п.). Основными из этих направлений являются в большинстве стран оборона, национальная безопасность, исследование космического пространства и его освоение, научно-методическая помощь сельскому хозяйству, атомная энергетика, здравоохранение и сложные медицинские установки, экология.
Индикаторы науки и техники — система количественных и качественных показателей, отражающих состояние и динамику изменений научно- технического потенциала. Индикаторы могут быть прямыми и косвенными, масштабными и структурными, абсолютными и относительными. Примерами прямых количественных масштабных абсолютных показателей являются объем национальных затрат на ИР, численность ученых и инженеров в стране, средняя заработная плата ученого. К косвенным абсолютным показателям относятся объем и структура ВВП, производительность труда, объем производства наукоемкой продукции. В последние годы в связи с развитием информационных технологий широкое применение находят такие показатели информатизации общества, как число компьютеров на 100 тысяч населения или число пользователей сетью Интернета, число хостов или число защищенных серверов в стране на 100 тысяч или на 1 миллион населения и т. п.
Инновационная деятельность — процесс создания новых потребительных стоимостей (товаров и услуг). Цикд инновационной деятельности может быть представлен в виде следующих этапов: новое знание — полезная модель — опытный образец — новая потребительная стоимость. В современных развитых странах инновационная деятельность основана на массовом применении в экономике (на всех ее уровнях и этапах) новых научных знаний. Ее воспроизводство и совершенствование является приоритетной задачей как частного бизнеса так и государства, так как только инновационные продукты, составляющие более 90% всех товаров и услуг на мировом рынке, обеспечивают фирмам и государствам необходимые конкурентные преимущества и возможность прогрессивного развития. (См. научная деятельность, национальный научно-технический потенциал).
Инновационная система — подсистема общества, прежде всего его экономики, нацеленная не только на воспроизводство, репродукцию достигнутого уровня всего развития, но и на его обновление, прогресс. Инновационная система имеет своей сердцевиной инновационную деятельность. Однако она шире последней, так как включает в себя дополнительные звенья: организацию реализации и потребления произведенных новых потребительских стоимостей (товаров и услуг), благодаря успешному осуществлению которых может начаться новый цикл инновационной деятельности. (См. наука, научная деятельность, инновационная деятельность).
Инновационная экономика — экономика, основанная на существенном и массовом использовании научных знаний в производстве товаров и услуг. Вес научных знаний в производстве таких потребительных стоимостей, особенно с помощью высоких технологий, может составлять значительную часть (до 10—15%) от общей стоимости произведенного продукта. (См. инновационная деятельность, инновационная система, наука.) Интеллектуальная собственность — право на владение интеллектуальным продуктом, закрепленное за правообладателем юридически. Согласно Гражданскому Кодексу Российской Федерации (Статья 138) интеллектуальная собственность — исключительные права физического или юридического лица на результаты интеллектуальной деятельности и приравненные к ним средства индивидуализации юридического лица, продукции, работ и услуг, т.е. фирменное наименование, товарный знак и др.
Использование объектов интеллектуальной собственности — их введение в хозяйственный оборот. Продукт (изденацка - основа инновационной системы современного общества лие) считается изготовленным с использованием, например, изобретения, полезной модели, а способ, охраняемый патентом на изобретение, — примененным, если в нем использован каждый признак изобретения, полезной модели, включенный в независимый пункт формулы, или эквивалентный ему признак. Изделие признается изготовленным с использованием запатентованного промышленного образца, если оно содержит все его существенные признаки. Использование в коммерческих целях — это продажа, сдача внаем или иной способ коммерческого распространения, а также предложение осуществлять эти действия. Под использованием понимается именно использование в коммерческих целях, если не оговорено иное.
Наукоемкая отрасль — отрасль производства или услуг, в которой преобладающее значение имеют наукоемкие технологии.
Наукоемкая технология — технология, при использовании которой объемы ИР превышают среднее значение этого показателя в определенной области экономики (обрабатывающая промышленность, добывающая промышленность, сельское хозяйство, сфера услуг и т. п.).
Наукоемкое изделие — изделие, в себестоимости или добавленной стоимости которого затраты на ИР выше, чем в среднем в изделиях данной отрасли. В англоязычной литературе используется термин high tech — высокая технология, изделие и т. д., отражающий именно высокий уровень затрат на ИР в отрасли или изготовлении какого-либо изделия. Стандартизированной классификации отраслей или изделий хозяйства по признаку наукоемкости не существует. Примерами наукоемких отраслей производства могут служить аэрокосмическая промышленность, производство компьютерной и сложной техники, производство электронных средств связи, фармацевтическая промышленность. В среде услуг это образование, здравоохранение, разработка промышленного обеспечения, маркетинговые услуги и др.
Научный парк (исследовательский парк, технологический парк) — научно-производственный территориальный комплекс (обычно одно или несколько зданий), в котором на условиях аренды размещаются малые и средние наукоемкие фирмы. Администрация парка предоставляет клиентам некоторый набор услуг бесплатно или за небольшую плату. Обычно парк формируется при крупном исследовательском или образовательном центре.
Национальная исследовательская программа — организационная форма кооперации усилий всех секторов национальной науки для решения крупной и сложной технической проблемы. Работы в рамках национальной программы охватывают так называемую «доконкуреттгуго» стадию ИР. Совместно решаются фундаментальные научные проблемы, исследуются новые физические эффекты, изыскиваются принципиальные технические решения, создаются макеты и прототипы, испытательные стенды и комплексы для апробации новых технологий, но не конкретная рыночная продукция. Чтобы перейти от совместно полученных результатов к конкретному изделию, необходима основательная конструктивная и технологическая доработка применительно к возможностям и профилю того или иного участка программы. На этой, теперь уже «конкурентной», стадии и разворачивается борьба зато, чтобы быстрее и эффективнее реализовать коллективно созданный научно-технический задел. При этом на базе какого-либо прототипа, разработанного на «доконкурентном» этапе, могут появиться десятки разнообразных устройств и систем. В итоге конкуренция не спадает, а технический уровень всех участников национальной программы поднимается на новую, более высокую ступень. Национальный научно-технический потенциал — совокупность кадровых, материальных, финансовых и информационных ресурсов, а также организационно-управленческих и образовательных структур, обеспечивающих функционирование сферы «наука — техника». Прикладная наука — исследования, направленные на использование научных знаний и методов для решения практических задач, на создание новых, либо совершенствование существующих видов продукции или технологических процессов. Прикладные исследования могут включать расчеты, эксперименты, макетирование и испытания макетов, компьютерное моделирование. Промышленный сектор науки — совокупность научных центров и исследовательских лабораторий, принадлежащих промышленным, сельскохозяйственным или сервисным предприятиям. Процесс нововведения — последовательность, включающая в себя фундаментальную науку, прикладные исследования, разработки, маркетинг, серийное производство и сбыт нового вида продукции или аналогичная последовательность создания и применения новой технологии и изготовления изделий. Процесс может включать все перечисленные стадии или только часть их, выступая в сокращенном, урезанном виде. Разработки — проектирование, изготовление и испытание опытных образцов изделий, внесение корректив по результатам испытаний и выполнение всех прочих действий, предшествующих серийному производству и сбыту продукции.
Тема 9
Аксиология (от греч. Axios— ценность и logos — слово, учение) — в общем случае — учение о ценностях; но весьма различным образом трактуемое в зависимости от общих исходных философских установок и предпосылок учения — от естественно-натуралистических до метафизически-религиозных.
Антисциентизм — философская концепция, обосновывающая антигуманитарную сущность науки и технического прогресса в его современных формах. Наука с ее жестким рационализмом и стандартизацией не способна адекватно ™""'а1^ приростный мир человека, его индивидуальный жизненный мир и свободу, без которых нет человеческой личности. Наука чужда человеку не только потому, что усредняет и стандартизирует всех, способствуя развитию тоталитарного сознания в обществе, но и из-за своих опасных технологических и экологических применений, когда партикулярная, краткосрочная выгода становится ведущим мотивом. Только гуманитарный, ценностный контроль за развитием науки со стороны всего общества способен как-то ослабить мощь взлелеянного наукой монстра научно-технического прогресса. Организационными формами протестного движения антисциентизма являются различного рода религиозные, религиозно-экологические, антивоенные, анархистские течения.
Биофилософия — вариант натуралистической (см. НАТУРАЛИЗМ) ориентации в философии, исходящий из убеждения, что исходным и центральным при решении мировоззренческих и смысложизненных проблем должно быть понятие ЖИЗНИ в ее научно-биологической интерпретации.
Герменевтика — один из главных методов гуманитарных наук, заключающийся в искусстве толкования и интерпретации текстов любой природы (т. е. литературных, религиозных, юридических и т. д.). Гуманитарные науки — в широком смысле — науки о bci продуктах деятельности человека (науки о культуре) В более специальном смысле — науки о продуктах духо| ной творческой деятельности человека (науки о духе). Их обычно отличают от общественных (социальных) наук изучающих различные стороны и институты экопомичес кой и социально-политической жизни человека (экономика, социология, политология и др.), а также от антропологии как общего учения о человеке как таковом.
Естествознание — науки о природе (см. ПРИРОДА), в том числе и о человеке как ее части.
Кибернетика — наука о процессах и законах УПРАВЛЕНИЯ, протекающих в сложных динамических системах природы, общества и человеческой культуры на основе использования информации.
Культура — с широком смысле — вся совокупность продуктов материальной и духовной целенаправленной деятельности человека — от орудий производства, зданий, социальных институтов И политических учреждений до языка, произведений искусста, религиозных систем, науки, норм нравственности и права.
Метафизика — категория философии, имеющая два основных значения: 1) всеобщее, синтетически-априорное знание (философия в этом смысле есть синоним рациональной или теоретической метафизики); 2] философия, абстрагирующаяся при создании теоретических моделей мировоззрения от идеи развития как всеобщего, необходимого и первичного свойства всех явлений и процессов (как материальных, так и духовных). Во втором значении термин «метафизика» ввел в свои построения Гегель, а после него в этом значении он употреблялся также и в марксистско-ленинской философии, а также других философских течениях (неогегельянство и др.). Бинарной оппозицией категории «метафизика» в ее первом значении является категория «апостериорное знание» или аконк-ретно-научное знание». Бинарной оппозицией категории «метафизика» во втором ее значении является термин «диалектика» как всеобщая теория развития, которую Г«и марксисты рассматривали как единственную истинную философию и всеобщий метод мышления (правда, кэжды* в своей интерпретации).
Натурализм — (от лат. natura — природа] — в общем с чае — философская позиция, считающая понятие ПРИРОДА исходным и главным при рассмотрении мировозреических и смысложизненных проблем и отвергаю при этом любые допущения о существовании каких-либо трансцендентных (сверхъестественных) сущностях, недоступных обычному научному познанию.
Наука — специализированная когнитивная деятельность сообществ ученых, направленная па получение нового научного знания о различного рода объектах, их свойствах и отношениях. Научное знание должно отвечать определенным критериям: предметности, воспроизводимости, объективности, эмпирической и теоретической обоснованности, логической доказательности, полезности. Сегодня наука является сверхсложной социальной системой, обладающей огромной степенью самоорганизации, мощной динамикой расширенного воспроизводства, результаты которой образуют основу развития современного общества.
Научное мировоззрение — мировоззрение, ориентирующееся в своих построениях на конкретные науки как на одно из своих оснований, особенно на их содержание как материал для обобщения и интерпретации в рамках философской онтологии (всеобщей теории бытия). Сама наука в ее современном понимании как опытно (экспериментально) — теоретическое (математическое] изучение различных объектов и явлений действительности в целом мировоззрением не является, так как, во-первых, наука изучает саму объективную действительность, а не отношение человека к ней (а именно:>та проблема является основным вопросом всякого мировоззрения), а во-вторых, любое мировоззрение является ценностным видом сознания, тогда как наука — реализацией его когнитивной сферы, целью которой является получение знания о свойствах и отношениях различных объектов самих по себе. Особенно большое значение для научного мировоззрения имеет его опора на знание, полученное в исторических, социальных н поведенческих науках, так как именно в них аккумулируется знание о реальных формах и механизмах отношения человека к действительности во всех ее сферах.
Объяснение — главная познавательная операция всех естественных наук (от физики до биологии, геологии и географии), заключающаяся в том, что любое природное явление, его свойства, изменения и пр. трактуются как прямое следствие «слепо» действующих материальных причинных взаимодействий в соответствии с определенными законами природы. Понимание — главная познавательная операция гуманитарных наук, вытекающая из того, что любой матернализованный продукт человеческой деятельности рассматривается как воплощающий в себе определенный замысел, цель его создателя; в таком случае «понять что-то» — значит проникнуть в смысл произведенного человеком, ответить на вопросы «зачем?», «для чего?» оно сделано, какую функцию выполняет, какую реализует в себе ценность и т. д. Природа — в широком смысле — вся совокупность вещей, явлений и процессов, существующих по своим собственным законам до и независимо от человека и человеческого общества; природа в этом смысле, с одной стороны, выступает как необходимое условие существования человека, а с другой — как потенциальный объект его практической и познавательной деятельности и материал для формирования КУЛЬТУРЫ. Синергетика — наука о процессах и законах САМООРГАНИЗАЦИИ сложных нелинейных динамических систем в природе, обществе и человеческой культуре, находящихся в состояниях, далеких от термодинамических равновесных. Социобиология — в широком смысле — исследование биологических основ всякого социального поведения (как в живой природе, так и в человеческом обществе). 3 более специальном смысле — исследование генетически-попу-ляционных механизмов формирования эгоистических и альтруистических форм поведения в живой природе на основе различных типов естественного отбора. Сциентизм — философская концепция, заключающаяся в абсолютизации роли науки в системе современной культуры, в социальной и духовной жизни общества. В качестве образца науки сциентисты обычно рассматривают естественные математические и технические науки. Сциентисты полагают, что только наука способна дать ответ на все конкретные проблемы бытия. Одной из форм теоретического обоснования сциентистской позиции является позитивистская философия. Основой распространения сциентистских умонастроений в обществе явились огромные успехи частных наук в познании природы, общества, познания и человека. В то же время, недооценивая ценностные формы познания (философию, религию, мораль, искусство и др.), которые принципиально несводимы к объективному типу научного познания, сциентисты тем самым объективно принижают роль гуманитарной компоненты в развитии общества. Телеология (от греч. telos — цель, завершение, конец и logos — учение, слово) — в общем случае — такой спосо понимания и объяснения явлений объективного мира и человеческой деятельности, при котором важное (инода даже решающее) место отводится понятиям цели, функции, смысла, значения и т. д. Технократизм — социально-философская концепция, преувеличивающая роль техники, технологий, ученых в развитии не только материальной деятельности человека, но и всей социальной жизни, общества в целом. Концепциям технократизма (К. Штайнбух, Г. Краух, Дж.Г. Гэлберт и др.) противостоят, с одной стороны, концепции приоритета духовных ценностей в жизни общества (религия, философия культуры, философия жизни, экзистенциализм), а с другой— концепции сбалансированного взаимодействия технического прогресса и духовной сферы, осуществляемого с позиций гуманизма, под контролем всего общества с помощью его демократических политических институтов.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.035 сек.) |