|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Билет28
Дифракцией света называется явление отклонения света от прямолинейного направления распространения при прохождении вблизи препятствий. Как показывает опыт, свет при определенных условиях может заходить в область геометрической тени. Если на пути параллельного светового пучка расположено круглое препятствие (круглый диск, шарик или круглое отверстие в непрозрачном экране), то на экране, расположенном на достаточно большом расстоянии от препятствия, появляется дифракционная картина – система чередующихся светлых и темных колец. Если препятствие имеет линейный характер (щель, нить, край экрана), то на экране возникает система параллельных дифракционных полос. Принцип Гюйгенса — Френеля: волновая поверхность в любой момент времени представляет собой не просто огибающую вторичных волн, а результат их интерференции. Для того чтобы найти амплитуду световой волны от точечного монохроматического источника света А в произвольной точке О изотропной среды, надо источник света окружить сферой радиусом r=ct. Интерференция волны от вторичных источников, расположенных на этой поверхности, определяет амплитуду в рассматриваемой точке О, т. е. необходимо произвести сложение когерентных колебаний от всех вторичных источников на волновой поверхности. Так как расстояния от них до точки О различны, то колебания будут приходить в различных фазах. Наименьшее расстояние от точки О до волновой поверхности В равно r0. Первая зона Френеля ограничивается точками волновой поверхности, расстояния от которых до точки О равны: , где λ — длина световой волны. Вторая зона . Аналогично определяются границы других зон. Если разность хода от двух соседних зон равна половине длины волны, то колебания от них приходят в точку О в противоположных фазах и наблюдается интерференционный минимум, если разность хода равна длине волны, то наблюдается интерференционный максимум. Таким образом, если на препятствии укладывается целое число длин волн, то они гасят друг друга и в данной точке наблюдается минимум (темное пятно). Если нечетное число полуволн, то наблюдается максимум (светлое пятно). Расчеты позволили понять, каким образом свет от точечного источника, испускающего сферические волны, достигает произвольной точки О пространства. Дифракционная решетка - система препятствий (параллельных штрихов), сравнимых по размерам с длиной волны. Величина d = a + b называется постоянной (периодом) дифракционной решетки, где а — ширина щели; b — ширина непрозрачной части. Угол φ - угол отклонения световых волн вследствие дифракции. Для рассмотрения всех лучей спектра, обратимся к спектру, играющему в учении о свете первенствующую роль, а именно – к «дифракционному» спектру. Он получается при прохождении света сквозь большое число малых отверстий и щелей. Спектр подобного рода мы видим прищурившись сквозь ресницы на какой-либо яркий источник света, например спираль лампы накаливания или на солнце. Радужные круги вокруг луны в морозные ночи – это также дифракционные спектры, полученные от прохождения лучей света через бесчисленное множество мельчайших промежутков между носящимися в воздухе частицами замерзших паров. В совершенном же виде дифракционные спектры получаются при пропускании света сквозь дифракционные решетки или при отражении от них.
Рентгеноструктурный анализ — дифракционный метод исследования структуры вещества. В основе данного метода лежит явление дифракции рентгеновских лучей на трехмерной кристаллической решетке. Метод позволяет определять атомную структуру вещества, включающую в себя пространственную группу элементарной ячейки, ее размеры и форму, а также определить группу симметрии кристалла. Голография – метод записи и восстановления изображения, основанный на интерференции и дифракции волн.Голография позволяет фиксировать и воспроизводить более полные сведения об объекте с учетом амплитуд и фаз волн, рассеянных предметом. Регистрация фазы возможна вследствие интерференции волн. С этой целью на светофиксирующую поверхность посылают две когерентные волны: опорную, идущую непосредственно от источника света или зеркал, которые используются как вспомогательные устройства, и сигнальную, которая появляется при рассеянии (отражении) части опорной волны предметом и содержит соответствующую информацию о нем. Интерференционную картину, образованную сложением сигнальной и опорной волн и зафиксированную на светочувствительной пластинке, называют голограммой. Для восстановления изображения голограмму освещают той же опорной волной. При восстановлении изображении можно изменить длину опорной волны. Так, например, голограмму, образованную невидимыми электромагнитными волнами (ультрафиолетовыми, инфракрасными и т.п.), можно восстановить видимым светом. В медицине голографию применяют как метод интроскопии или внутривидения, основанный на зависимости условий отражения и поглощения электромагнитных волн телами, в частности, от длины волны. Еще одно приложение голографии в медицине связано с голографическим микроскопом. Его устройство основано на том, что изображение предмета получается увеличенным, если голограмму, записанную с плоской опорной волной, осветить расходящейся сферической волной.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.) |