|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Логика высказываний. Отношения атрибутивных высказываний по истинности. Логический квадрат
Среди высказываний отрицания различают высказывания с внешним и внутренним отрицанием. В зависимости от задач исследования высказывание отрицания можно рассматривать или как простое, или как сложное высказывание. При рассмотрении высказывания отрицания как простого высказывания важной задачей является определение правильной логической формы высказывания: - простое высказывание, содержащее внутреннее отрицание, принято относить к отрицательным высказываниям (см. «Виды атрибутивных высказывания по качеству»). Например: «Некоторые жители Республики Беларусь не пользуются банковскими кредитами», «Ни один заяц не является хищником»; - правильной логической формой простого высказывания с внешним отрицанием является противоречащее данному высказывание с(м. «Логические отношения между высказываниями. Логический квадрат»). Например: высказыванию «Не все люди жадные» соответствует высказывание «Некоторые люди не являются жадными». Рассматривая высказывание отрицания как сложное высказывание, необходимо определить его логическое значение. Исходное высказывание: Солнце светит (р). Высказывание отрицания: Солнце не светит (┐р). Высказывание двойного отрицания: Неверно, что солнце не светит (┐┐р). Высказывание отрицание истинно лишь тогда, когда исходное высказывание ложно, и наоборот. С высказыванием отрицания связан закон двойного отрицания: двойное отрицание произвольного высказывания равносильно самому этому высказыванию. Условия истинности высказывания отрицания изображены на рисунке
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.) |