|
||||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Основные тождества алгебры множествОсновные понятия теории множеств. Способы задания множеств. Под множеством будем понимать совокупность определённых вполне различаемых объектов, рассматриваемых как единое целое, это понятие – фундаментально. Для обозначения конкретных множеств используются заглавные буквы с индексом или без (A, X1, Х2), элементы множеств обозначаются строчными буквами (а, х1, х2). Принадлежность элемента множеству обозначается символом ∈. Множества бывают конечными и бесконечными. Конечные множества – множества, в которых число элементов конечно. Бесконечные множества – бесконечное число элементов. Множества задаются двумя способами: перечислением и описанием. Задание перечислением – перечисление всех элементов, составляющих множество. Он удобен для задания конечных множеств с небольшим количеством элементов и для задания множеств типа {2, 4, 6, 8…}. Описательный способ задания множества состоит в том, что указывается характерное свойство, которым обладают все элементы множества. Элементы множества – отдельные объекты, из которых состоит множество. Считают, что множество задано своими элементами, т.е. множество задано, если о любом объекте можно сказать: принадлежит он этому множеству или не принадлежит. Задавать множество можно следующими способами:
1) Если множество конечно, то его можно задать перечислением всех его элементов. Так, если множество А состоит из элементов 2, 5, 7, 12, то пишут А = {2, 5, 7, 12}. Количество элементов множества А равно 4, пишут n(А) = 4. Но если множество бесконечно, то его элементы нельзя перечислить. Трудно задать множество перечислением и конечное множество с большим числом элементов. В таких случаях применяют другой способ задания множества. Характеристическое свойство – это такое свойство, которым обладает каждый элемент, принадлежащий множеству, и не обладает ни один элемент, не принадлежащий ему.
Операции над множествами. Основные тождества алгебры множеств.
Объединением (суммой) множеств А и В называется множество А ∪ В, элементы которого принадлежат хотя бы одному из этих множеств. Пересечением (произведением) множеств А и В называется множество А ∩ В, элементы которого принадлежат как множеству А, так и множеству В. Разностью множеств А и В называется множество АВ, элементы которого принадлежат множесву А, но не принадлежат множеству В. Симметричной разностью множеств А и В называется множество А Δ В, являющееся объединением разностей множеств АВ и ВА, то есть А Δ В = (АВ) ∪ (ВА). Свойства перестановочности A ∪ B = B ∪ A A ∩ B = B ∩ A Сочетательное свойство (A ∪ B) ∪ C = A ∪ (B ∪ C) (A ∩ B) ∩ C = A ∩ (B ∩ C) Основные тождества алгебры множеств.
Для произвольных множеств А, В, и С справедливы следующие соотношения (табл. 1): Таблица 1
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |