АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Простые проценты

Читайте также:
  1. Вещи манципируемые и неманципируемые, простые и сложные в римском праве.
  2. Затраты основные и накладные, простые и комплексные, прямые и косвенные, производительные и непроизводительные
  3. Капиллярные гемангиомы (простые)
  4. Классификация показателей эффективности ИП. Простые показатели эффективности
  5. Лекция 1. Простые проценты
  6. Лекция 2. Сложные проценты
  7. Макс Фрай «Простые волшебные вещи»
  8. Непрерывные проценты
  9. Понятие производства: его сущность и предпосылки. Простые моменты процесса труда
  10. Простые (внутренние и внешние) противоречия
  11. ПРОСТЫЕ ДВИГАТЕЛЬНЫЕ НАВЫКИ (осанка, походка, позы сидя и жесты)
  12. Простые и сложные процентные ставки

Под наращенной суммойссуды (депозита, инвестированных средств, платежного обязательства и т.п.) понимается ее первоначальная сумма с начисленными на нее процентами к концу срока наращения.Величина наращенной суммы представляет собой произведение первоначальной суммы ссуды на множитель наращения, который показывает во сколько раз наращенная сумма больше первоначальной.В зависимости от применяемой процентной ставки и условий наращения формула расчета множителя наращения записывается по-разному.

Например, для наращения по простым процентам наращенная сумма (S) будет рассчитываться так:

,

где Р – первоначальная сумма ссуды, ден. ед.; п –срок ссуды (а днях, месяцах, годах и т. п.); i – ставка наращения (простая постоянная), ед.

Выражение (1 + ni) называется множителем наращения.

В финансово-экономических расчетах срок ссуды обычно измеряется годами, поэтому значение ставки наращения i есть значение годовой ставки процентов. Проценты, начисленные за весь срок ссуды, в этом случае составят:

,

где I – процентная сумма (величина дохода), ден. ед.

Представленная выше формула называется формулой простых процентов, а величину I можно определить как процентный доход, или процентные деньги (проценты).

В практической работе банки, коммерческие организации, финансовые институты и т.п. используют различные способы изменения числа дней ссуды (t) и продолжительности года ( временной базыдля расчета процентов) в днях (К).В зависимости от того, как определяются величины t и К– точно, или приблизительно применяются следующие варианты («практики», «системы») начисления простых процентов.

1. Точные проценты с фактическим числом дней ссуды(так называемая «английская» практика).Этот вариант дает самые точные результаты и применяется многими центральными и крупными коммерческими банками мира. В этом случае K=365 дням, а в месяцах 28, 29, 30 и 31 день.

2. Обыкновенные проценты с точным числом дней ссуды(так называемая «французская»практика или банковский метод).Этот вариант дает несколько больший результат, чем применение точных процентов.Так, если число дней ссуды превышает 360, то данный способ измерения времени приводит к тому, что сумма начисленных процентов будет больше, чем предусматривается годовой ставкой. Например, при t = 363 дням, n=363:З60=1,0083, а множитель наращения за этот период будет равен: 1+1,0083*i.

3.Обыкновенные проценты с приближенным числом днейссуды («германская»практика). Подсчет числа дней в этом варианте базируется на годе в 360 дней и месяцах по 30 дней. Поскольку точное число дней ссуды в большинстве случаев больше приближенного, то проценты с точным числом дней обычно больше, чем с приближенным, a следовательно, и наращенная сумма по процентам с точным числом дней обычно выше.

Наращение суммы в случае изменения простой процентной ставки в течение срока ссуды.На практике часто встречается ситуация, когда кредитные договоры (соглашения) предусматривают изменение процентной ставки в течение срока ссуды (например, в связи с изменением ставки рефинансирования; желанием банка учесть темп инфляции и т. д.). При этом годовая ставка процентов, указанная в кредитном договоре, носит название номинальной.В этом случае наращенная сумма будет исчисляться следующим образом:

,

 

где it, – ставка простых процентов в периоде t; t=l,2,...,m; ед.;

nt, – продолжительность периода; лет;

т – число периодов, ед.

Наращение суммы при реинвестировании.В целях повышения заинтересованности вкладчиков и быстрого привлечения дополнительных денежных средств, например, в кратко- и среднесрочные депозиты, банки и финансовые компании могут предлагать производить своим клиентам неоднократное наращение вложенной суммы в пределах общего срока займа, т.е. реинвестировать ее. Иными словами, реинвестирование предполагает присоединение начисленных процентов к исходной (первоначальной) сумме и начисление процентов уже на возросшую сумму, и так несколько раз за период.При таком реинвестировании наращенная сумма рассчитывается по формуле:

,

где n1,n2,...nt – продолжительность периодов наращения, лет;

причем (общий срок сделки);

i1, i2, … it, – ставки реинвестирования, ед.

В частном случае, когда и , т.е. когда периоды начисления и ставки процентов равны формула принимает

,

где m – число операций реинвестирования, ед.

Пример 1.1.На сумму вклада в размере 50 тыс. р. в течение месяца начисляются простые проценты по ставке 24% годовых. Какова будет наращенная сумма, если эта операция будет повторена в течение 6 мес. текущего года (т.е. при реинвестировании этой суммы шесть раз) при расчете точных процентов с фактическим числом дней ссуды с 1 -го марта?

Решение.

По условиям примера Р = 50 тыс. р.; i = 0,24. Точное число дней не високосного года, начиная с марта и заканчивая августом составит: 31+30+31+30+31->-31=184 дня.

По формуле получаем:

Пример 1.2.Потенциальный клиент ряда надежных и расположенных в пределах его пешеходной доступности банков города имеет временно свободные денежные средства в размере 10 тыс. р. и хотел бы поместить их на депозитный счет сроком на 1 год. Первый банк (банк А) предлагает ему сделать вклад на условиях ежеквартального начисления по ставке 20% годовых и капитализации (реинвестирования) процентов. Второй банк (банк Б) на следующих условиях: начисление на вклад по ставке 24% годовых дважды в год с капитализацией процентов. Банк В предлагает ежемесячное начисление процентов по ставке 20% годовых и капитализацией начисленных процентов. И, наконец, банк Г предлагает сделать вклад на условиях начисления 25% годовых без капитализации процентов и начисления их в конце срока вклада.

В каком из банков вкладчик может получить наибольшую сумму по окончании срока договора?

Решение.

По условиям примера Р = 10тыс. р.; i1 = 20%; i2 = 24%; i3 = 20%; i4 = 25%. Учитывая, что начисление процентов происходит ежеквартально, по полугодиям и ежемесячно с капитализацией, и только в банке Г – в конце года (без реинвестирования), по формуле и получим (тыс. р.):

;

;

;

.

Наращенная сумма при вкладах в конце и в начале каждого года.

Довольно часто по условиям договоров вклада депозитных договоров банки предусматривают возможность довложения определенной (часто – не выше первоначальной) денежной суммы.

В случае если вклады делаются в конце каждого года, то наращенная сумма составит:

,

где m – число вкладов, ед.; D – величина вклада, ден. ед.

Если вклады по своей величине равны, т.е. D1=D2=D3=Dm, То формулу можно записать так:

,

или, учитывая, что

,

можно окончательно написать:

.

Очевидно, что наращение по ставке простых процентов в случае, когда довложения делаются в начале года, существенно выгоднее по сравнению в довложениями в конце года.Это происходит потому, что в первом случае увеличивается на один год наращения.

Расчет суммы необходимого депозита при ежегодных выплатах. Довольно часто (особенно при работе с клиентами – пенсионерами, со вкладами на несовершеннолетних и т.п.) работники банка, работающие со вкладами населения, сталкиваются с задачей определения необходимой первоначальной суммы вклада (депозита) клиента, который смог бы обеспечить ему определенные ежегодные выплаты в течении n лет по заранее оговоренной ставке процентов. В общем случае эта задача сводится к решению задачи определения «вечной» ренты, которая подробно будет рассмотрена ниже. Сейчас же рассмотрим ее решение исходя из тех знаний, которые мы уже имеем.

Используя формулу , можно составить следующее уравнение:

,

где Р12,…,Рn – определенные ежегодные выплаты, ден, ед.; п – время выплат, лет.

При условии равенства ежегодных выплат, т.е. при P1 =P2 = Р3 = Рn формулу можно преобразовать в выражение следующего вида:

.

Для приближенных, оценочных расчетов величины первоначального вклада можно использовать примерное равенство выражений:

.

Пример 1.3.Рассчитать необходимую первоначальную величину депозита клиента для того, чтобы он имел возможность ежегодно в течении 5 лет получать со своего счета в банке сумму в размере 6 тыс. руб. при начислении простой процентной ставки, равной 30% годовых.

Решение

По условиям примера Р=6 тыс. руб.; in=30%; n=5 лет. Используя формулу , получим (тыс. р.):

.

 

 

Расчет по формуле дает следующий результат:

.

Расхождение по сравнению с результатом, полученным по первой формуле, равно – 0,046 тыс. руб., или менее 0,3%. Как видим, расчет по второй формуле дает вполне приемлемый результат.

Расчет срока ссуды и уровня процентной ставки.При подготовке обоснования для получения ссуды и расчета ее эффективности возникает задача определения срока ссуды и уровня процентной ставки при имеющихся прочих условиях. В этом случае срок ссуды может быть определен как в годах, так и в днях:

в годах ;

в днях .

Соответственно и размер процентной ставки может быть определен при исчислений срока ссуды в годах как:

,

а при исчислении срока ссуды в днях так:

.

Наращение и равномерная выплата процентов в потребительском кредите. В потребительском кредите, т.е. кредите, как правило, на личные нужды для приобретения товаров (или услуг) проценты начисляются на всю сумму кредита и присоединяются к основному долгу чаще всего уже в момент открытия кредита. Такой подход называется разовым начислением процентов, апогашение долга с процентами в этом случае производится обычно равными суммами на протяжении всего срока кредита. Наращенная сумма долга при таком подходе рассчитывается по формуле , а величина разового погасительного платежа (R) так:

,

где т – число погасительных платежей по кредиту в году, ед.

Заметим, что в связи с тем, что проценты начисляются на первоначальную сумму долга, а фактическая его величина постоянно уменьшается со временем, действительная процентная ставка (по фактически использованному кредиту) оказывается заметно выше, чем ставка по первоначальным договорным условиям.

 

Вопросы для самопроверки:

 

1. Что является предметов финансовой математики?

2. Какую роль играет время в финансовых расчетах?

3. Перечислите виды процентных ставок.

4. Что такое наращенная сумма?

5. Что такое дисконтирование?

6. Как определяется величина процентной ставки?

7. Как рассчитывается срок ссуды.


1 | 2 | 3 | 4 | 5 | 6 | 7 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.009 сек.)