|
||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Пример. Рассчитать наращенную сумму с исходной суммы в 1 млн
Рассчитать наращенную сумму с исходной суммы в 1 млн. руб. при размещении ее в банке на условиях начисления простых и сложных процентов, если а) годовая ставка 20%; б) периоды наращения: 90 дн., 180 дн., 1 год, 5 лет, 10 лет. Результаты расчетов имеют следующийвид: (млн.руб.)
Таким образом, если денежные средства размещены в банке на срок в 90 дней (менее одного года), то наращенная сумма составит: при использовании схемы простых процентов — 1,05 млн.руб.; при использовании схемы сложных процентов — 1,0466 млн.руб. Следовательно, более выгодна первая схема (разница — 3,4 тыс.руб.). Если срок размещения денежных средств превышает один год, ситуация меняется диаметрально — более выгодна схема сложных процентов, причем наращение в этом случае идет очень быстрыми темпами. Так, при ставке в 20% годовых удвоение исходной суммы происходит следующим темпом: при использовании схемы простых процентов за пять лет, а при использовании схемы сложных процентов — менее чем за четыре года. Использование в расчетах сложного процента в случае многократного его начисления более логично, поскольку в этом случае капитал, генерирующий доходы, постоянно возрастает. При применении простого процента доходы по мере их начисления целесообразно снимать для потребления или использования в других инвестиционных проектах или текущей деятельности. Формула сложных процентов является одной из базовых формул в финансовых вычислениях, поэтому для удобства пользования значения множителя FМ1(r,n), называемого мультиплицирующим множителем и обеспечивающего наращение стоимости, табулированы для различных значений r и n (см. приложение 3). Тогда формула алгоритма наращения по схеме сложных процентов переписывается следующим образом: Fn= Р· FМ1(r,n), (4.4) где FМ1(r,n) = (1 + r)n — мультиплицирующий множитель. Экономический смысл множителя FМ1(r,n) состоит в следующем: он показывает, чему будет равна одна денежная единица (один рубль, один доллар, одна иена и т.п.) через n периодов при заданной процентной ставке r. Подчеркнем, что при пользовании этой и последующими финансовыми таблицами необходимо следить за соответствием длины периода и процентной ставки. Так, если базисным периодом начисления процентов является квартал, то в расчетах должна использоваться квартальная ставка. В практических расчетах для наглядной и быстрой оценки эффективности предлагаемой ставки наращения при реализации схемы сложных процентов пользуются приблизительным расчетом времени, необходимого для удвоения инвестированной суммы, известным как «правило 72-х». Это правило заключается в следующем: если r — процентная ставка, выраженная в процентах, то k == 72 / r представляет собой число периодов, за которое исходная сумма приблизительно удвоится. Это правило хорошо срабатывает для небольших значений r (до 20%). Так, если годовая ставка r = 12%, то k = 6 годам. Подчеркнем, что здесь речь идет о периодах начисления процентов и соответствующей данному периоду ставке, а именно, если базовым периодом, т.е. периодом наращения, является квартал, то в расчете должна использоваться квартальная ставка. Следует также обратить внимание на то обстоятельство, что хотя в большинстве финансовых расчетов процентная ставка берется в долях единицы, в формуле алгоритма правила 72-х ставка взята в процентах. Схема простых процентов используется в практике банковских расчетов при начислении процентов по краткосрочным ссудам со сроком погашения до одного года. В этом случае в качестве показателя n берется величина, характеризующая удельный вес длины подпериода (дни, месяц, квартал, полугодие) в общем периоде (год). Длина различных временных интервалов в расчетах может округляться: месяц — 30 дней; квартал — 90 дней; полугодие — 180 дней; год — 360 (или 365) дней. Пример. Выдана ссуда в размере 5 млн.руб. на один месяц (30 дней) под 130% годовых. Тогда размер платежа к погашению будет равен: Rn = 5 • (1 + 30: 360 • 130%: 100%) = 5,542 млн.руб Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |