|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
ПОНЯТИЕ ПРОСТОГО И СЛОЖНОГО ПРОЦЕНТАПредоставляя свои денежные средства в долг, их владелец получает определенный доход в виде процентов, начисляемых по некоторому алгоритму в течение определенного промежутка времени. Поскольку стандартным временным интервалом в финансовых операциях является 1 год, наиболее распространен вариант, когда процентная ставка устанавливается в виде годовой ставки, подразумевающей однократное начисление процентов по истечении года после получения ссуды. Известны две основные схемы дискретного начисления:
схема простых процентов (simple interest); схема сложных процентов (compound interest).
Схема простых процентов предполагает неизменность базы, с которой происходит начисление. Пусть исходный инвестируемый. капитал равен Р; требуемая доходность — r (в долях единицы). Считается, что инвестиция сделана на условиях простого процента, если инвестированный капитал ежегодно увеличивается на величину P·r. Таким образом, размер инвестированного капитала через n лет (Rn) будет равен:
Rn = Р + P · r +... + P · r = Р • (1 + n · r) (4.3)
Считается, что инвестиция сделана на условиях сложного процента, если очередной годовой доход исчисляется не с исходной величины инвестированного капитала, а с общей суммы, включающей также и ранее начисленные, и невостребованные инвестором проценты. В этом случае происходит капитализация процентов по мере их начисления, т.е. база, с которой начисляются проценты, все время возрастает. Следовательно, размер инвестированного капитала будет равен: к концу первого года: F1 = Р + P · r = Р (1+ r); к концу второго года: F2 = F1 + F1 · r = F1 · (1+ r) = Р • (1 + r)2; к концу n - го года: Fn = Р • (1 + r)n. Какже соотносятся величины Rn и Fn? Это чрезвычайно важно знать при проведении финансовых операций. Все зависит от величины n. С помощью метода математической индукции легко показать, что при n > 1, (1 + r)n > 1 + n · r. Итак, Rn > Fn, при 0< n <1; Rn < Fn, при n >1. Взаимосвязь Fn и Rn можно представить в виде графика (рис. 4.2). Таким образом, в случае ежегодного начисления процентов для лица, предоставляющего кредит: более выгодной является схема простых процентов, если срок ссуды менее одного года, (проценты начисляются однократно в конце периода); более выгодной является схема сложных процентов, если срок ссуды превышает один год (проценты начисляются ежегодно); обе схемы дают одинаковые результаты при продолжительности периода 1 год и однократном начислении процентов. Рис. 4.2. Простая и сложная схемы наращения капитала Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |