АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

И ИХ ХАРАКТЕРИСТИКА

Читайте также:
  1. Автобіографія. Резюме. Характеристика. Рекомендаційний лист
  2. Архитектурные школы XII в. на территории Беларуси. Общая характеристика.
  3. В29. Система мирных средств разрешения международных споров: краткая характеристика.
  4. В52. Совет Европы: общая характеристика.
  5. Варварские королевства. Общая характеристика.
  6. Види економічних циклів за тривалістю, їх характеристика.
  7. Виды насилия, их характеристика. Признаки и последствия насилия над ребенком.
  8. Виды периферийного оборудования компьютера, их краткая характеристика.
  9. Виды предприятий и их характеристика.
  10. Византийское искусство XI – XII вв. Общая характеристика. Основные произведения.
  11. Водная среда жизни и ее характеристика. Классификация гидробионтов
  12. Вопрос 44: «Национальная экономика и ее общая характеристика. Открытая и закрытая экономика»

К основным понятиям описательной статистики относятся:

ü статистическая совокупность (генеральная и выборочная);

ü объем совокупности;

ü статистический вариант;

ü статистический признак;

ü статистическая частота (абсолютная частота);

ü частость (относительная частота).

Статистическая совокупность - это множество объектов, объединенных по какому-либо признаку для статистического изучения.

Виды совокупностей:

1. Генеральная совокупность (конечная или бесконечная).

2. Выборочная совокупность (выборка).

Генеральная совокупность - это совокупность всех объектов выбранного для исследования статистического множества.

Конечная генеральная совокупность – статистическая совокупность, в которой количество изучаемых объектов с данным признаком ограничено.

Пример: количество студентов в академии, жителей в городе, число измерений в опытах.

Бесконечная генеральная совокупность - это статистическая совокупность, в которой число объектов равно бесконечности. Используется в теоретических расчетах как математическая абстракция.

Выборочная совокупность (выборка) - это часть генеральной совокупности, взятая для статического изучения.

Объем совокупности - это количество объектов, входящих в совокупность.

Объем генеральной совокупности обозначается символом N, а выборочной - n.

Статистический вариант - это объект совокупности, отдельное наблюдение или измерение.

Варианты обозначаются латинскими буквами x, y, z c подстрочными индексами, указывающими номер варианты.

Пример: х1 - объект или измерение номер один,

х2 - объект или измерение номер два и т.д.

Вариант без указания номера называется обобщенный вариант и обозначается латинской буквой с подстрочным буквенным индексом, например, xi.

Варианты (объекты) статистической совокупности характеризуются различными признаками, в том числе теми, на основе которых они объединены в совокупность.

Признак, который меняет свое значение от одного объекта к другому, называется варьирующим признаком, а само явление называется вариация.

Качественные признаки - это признаки, не имеющие количественного выражения. Это неизмеряемые признаки.

Пример: цвет, вкус, запах.

Количественные признаки - это измеряемые признаки, выражаемые определенным числом.

Пример: вес, длина, плотность, температура.

Дискретные количественные признаки - это количественные признаки, которые выражаются целыми числами.

Пример: число студентов в группе, пассажиров в автобусе, лепестков на цветке.

Непрерывные количественные признаки – это количественные признаки, которые выражаются как целыми, так и дробными числами.

Пример: вес арбуза 7 кг, вес дыни 1.7 кг.

Интервальный признак - это количественный признак, числовое значение которого лежит в определенных границах, называемых интервалами.

Пример: при измерении роста студентов, можно выделить интервальные группы 160 - 169 см, 170 – 179 см, 180 – 190 см.

Частота встречаемости (абсолютная частота) – число, показывающее, сколько раз объект с данным числовым значением признака встречается в совокупности или ее интервале.

Абсолютною частоту обозначают символом nii).

Сумма всех абсолютных частот равна объему совокупности N, для которой подсчитываются частоты: ∑ni = N

Пример: число лиц мужского и женского пола в группе должно быть равно в сумме количеству студентов в этой группе.

Частость (относительная частота) – число, равное отношению абсолютной частоты к объему совокупности.

Частость обозначают символом f и вычисляют по формуле:

в долях единицы: fi = ,

в процентах: fi = 100%

Здесь ni - абсолютная частота, N - объем совокупности, равный сумме всех абсолютных частот.

Сумма всех относительных частот равна 1: ∑ fi = 1

Пример: в студенческой группе из пятнадцати человек (объем совокупности N =15) 12 студенток (абсолютная частота n1 =12) и 3 студента (абсолютная частота n2 =3). Частость f1 будет равна 12/15, а частость f2 =3/15. При этом сумма частостей или относительных частот равна единице.

В статистике относительные частоты или частости называют весами.

 


1 | 2 | 3 | 4 | 5 | 6 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)