АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Дифференциальное исчисление функции. Дифференциальное исчисление функции

Читайте также:
  1. I Психологические принципы, задачи и функции социальной работы
  2. I. Деньги и их функции.
  3. I. Функции эндоплазматической сети.
  4. II. Основные задачи и функции
  5. II. Основные задачи и функции
  6. III. Предмет, метод и функции философии.
  7. IV. Конструкция бент-функции
  8. Ms Excel: мастер функций. Логические функции.
  9. SALVATOR создает Знания-Образы, когнитивные имитационные модели сознания, расширяющие человеческие возможности и защитные функции.
  10. V2: ДЕ 29 - Введение в анализ. Предел функции на бесконечности
  11. V2: ДЕ 32 - Дифференциальное исчисление функции одной переменной. Производная
  12. V2: ДЕ 35 - Дифференциальное исчисление функции одной переменной. Производные высший порядков

К У Р С

В Ы С Ш Е Й

М А Т Е М А Т И К И

 

ЧАСТЬ 2

 

Дифференциальное исчисление функции

одной переменной.

Производная функции, ее геометрический и физический смысл.

Определение. Производной функции f(x) в точке х = х0 называется предел отношения приращения функции в этой точке к приращению аргумента, если он существует.

 

 

у

f(x)

 

 

f(x0 +Dx) P

Df

f(x0) M

 

a b Dx

0 x0 x0 + Dx x

 

 

Пусть f(x) определена на некотором промежутке (a, b). Тогда тангенс угла наклона секущей МР к графику функции.

,

 

где a - угол наклона касательной к графику функции f(x) в точке (x0, f(x0)).

 

Угол между кривыми может быть определен как угол между касательными, проведенными к этим кривым в какой- либо точке.

Уравнение касательной к кривой:

Уравнение нормали к кривой: .

 

Фактически производная функции показывает как бы скорость изменения функции, как изменяется функция при изменении переменной.

Физический смысл производной функции f(t), где t- время, а f(t)- закон движения (изменения координат) – мгновенная скорость движения.

Соответственно, вторая производная функции- скорость изменения скорости, т.е. ускорение.

 

Односторонние производные функции в точке.

 

 

Определение. Правой (левой) производной функции f(x) в точке х = х0 называется правое (левое) значение предела отношения при условии, что это отношение существует.

 

 

Если функция f(x) имеет производную в некоторой точке х = х0, то она имеет в этой точке односторонние производные. Однако, обратное утверждение неверно. Во- первых функция может иметь разрыв в точке х0, а во- вторых, даже если функция непрерывна в точке х0, она может быть в ней не дифференцируема.

 

Например: f(x) = ïxï- имеет в точке х = 0 и левую и правую производную, непрерывна в этой точке, однако, не имеет в ней производной.

 

Теорема. (Необходимое условие существования производной) Если функция f(x) имеет производную в точке х0, то она непрерывна в этой точке.

Понятно, что это условие не является достаточным.

 

Основные правила дифференцирования.

Обозначим f(x) = u, g(x) = v - функции, дифференцируемые в точке х.

 

1) (u ± v)¢ = u¢ ± v¢

2) (u×v)¢ = u×v¢ + u¢×v, в частности, (C× u)¢ = C× u¢

3) , если v ¹ 0

 

Эти правила могут быть легко доказаны на основе теорем о пределах.

 

 

Производные основных элементарных функций.

1)С¢ = 0; 9)

2)(xm)¢ = mxm-1; 10)

3) 11)

4) 12)

5) 13)

6) 14)

7) 15)

8) 16)

 

 

Производная сложной функции.

 

 

Теорема. Пусть y = f(u); u = g(x), причем область значений функции u входит в область определения функции f.

Тогда

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)