АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Состав и строение тропосферы

Читайте также:
  1. A) подписать коллективный договор на согласованных условиях с одновременным составлением протокола разногласий
  2. Access. Базы данных. Определение ключей и составление запросов.
  3. I и II ополчения: их состав, значение.
  4. I. Составление дифференциальных уравнений и определение передаточных функций
  5. II. Составление формул солей.
  6. III Состав АИС
  7. III. ДИФФЕРЕНЦИАЛbНОЕ И ИНТЕГРАЛbНОЕ ИСЧИСЛЕНИЕ. ИХ ЛОГИЧЕСКИЙ СОСТАВ
  8. MathCad: построение, редактирование и форматирование графиков в декартовой системе координат.
  9. SWOT- анализ и составление матрицы.
  10. TFZPEXSP (тар.правила формирования состава ФОТ)
  11. Toxoplasma gondii. Строение, цикл развития, пути заражения, меры.
  12. V. Построение одного тренировочного занятия

 

Тропосфера — это ближайший к земной поверхности слой атмосферы, простираю­щийся до высоты 8—10 км в полярных ши­ротах и до 16—18 км в тропиках. В тропо­сфере содержится до 4/5 массы газов, составляющих атмосферу, и почти все коли­чество водяных паров.

 

В электрическом отношении тропосфера представляет собой весьма неоднородную среду, вследствие чего в ней происходит искривление траекторий радиоволн, а сле­довательно, изменение направления прихо­да волны и напряженности поля на данном расстоянии.

 

Чтобы учесть влияние тропосферы на распространение радиоволн, необходимо знать закономерности изменения и , ко­торые определяются физико-химическими свойствами входящих в тропосферу газов. Относительный газовый состав тропосферы остается постоянным по всей высоте, изме­няется лишь содержание водяных паров, ко­торое зависит от метеорологических усло­вий и убывает с высотой.

 

Нормальной тропосферой на­зывают такую гипотетическую тропосферу, свойства которой отображают среднее со­стояние реальной тропосферы. Нормальную тропосферу характеризуют следующими свойствами: давлением у поверхности Земли (р = 0,1013 МПа), температурой (T = 288 К) и относительной влажностью (S = 60%). С увеличением высоты на каждые 100 м давление уменьшается на 1,2 кПа, темпера­тура — на 0,55 К. Границей нормальной тропосферы считают высоту 11 км.

 

3.2 Диэлектрическая проницаемость и по­казатель преломления тропосферы

 

Относительная диэлектрическая прони­цаемость тропосферы (воздуха) только приближенно может считаться равной еди­нице. В действительности значение не­сколько больше единицы и зависит от дав­ления р (Па) температуры Т (К) и абсо­лютной влажности воздуха е (Па)

(3.1)

 

Второе слагаемое в (3.1) выражает изменение из-за смещения электрических зарядов в неполярных молекулах газов, входящих в состав воздуха, под влиянием внешнего поля и ориентации полярных мо­лекул водяного пара.

 

Коэффициент преломления тропосферы


и связан с величиной тропосферы выра­жением

(3.2)

 

У поверхности Земли значение n в за­висимости от климатических условий равно 1,00026—1,00046. Для расчетов удобнее пользоваться величиной, называемой приведенным показателем прелом­ления тропосферы, N=(n—l) 106, для Земли N = 260 460.

 

Для нормальной тропосферы изменение с высотой над земной поверхностью h (м) подчиняется экспоненциальному за­кону

 

 

,

 

где з = 5,78 — отклонение от еди­ницы у земной поверхности; — вертикальный градиент при h = 0.

 

Экспоненциальная зависимость от вы­соты наблюдается при усреднении значи­тельного числа наблюдений, тогда как еди­ничные конкретные кривые в той или иной мере отклоняются от этого закона. Особен­но велики отклонения в летний период на высотах до 2—3 км, где наблюдаются ин­тенсивные облачные слои, частые инверсии температуры и влажности. Практически всегда возникают сравнительно небольшие флуктуации относительно экспоненциаль­ной зависимости, вызванные турбулентным движением воздуха.

 

Эти флуктуации рассматриваются как неоднородности тропосферы. Размеры мел­ких неоднородностей определяются несколь­кими метрами или несколькими десятками метров, а отклонение от среднего значения N составляет DN = l 2. Мелкие неоднород­ности непрерывно изменяются, появляясь и исчезая. Средние значения N претерпевают сезонные и суточные изменения, причем эти изменения максимальны у земной поверхно­сти и падают почти до нуля на высотах 7— 8 км. Максимальные значения N у земной поверхности наблюдаются в июле, мини­мальные — в январе.

 

Сезонному ходу приземных значений N сопутствуют соответствующие изменения g. Значения градиентов g и их изменения осо­бенно велики в приземном слое и умень­шаются с высотой. Значения и g зависят от географического положения трассы и ме­няются вдоль самой трассы.

 

В приземном слое воздуха для упроще­ния расчетов возможно аппроксимировать экспоненциальный закон изменения с вы­сотой —-линейным

 

 

.

 

Вводится эффективный вертикальный градиент ди­электрической проницаемости тро­посферы , представляющий такой постоянный по высоте градиент , при ко­тором напряженность поля в точке приема будет такой же, как и в случае реального изменения на трассе.

 

Среднее значение градиента по­лучают в результате статистической обра­ботки большого числа измерений. Значения подчиняются нормальному закону рас­пределения со среднеквадратичным откло­нением . Средние значения (1/м) и среднеквадратичные отклонения (1/м) для различных климатических районов в летнее время, когда эти значения максимальны, изменяются в следующих пределах от до от до 11 . Имеются карты с изолиниями среднемесячных значений приведенного коэффициента преломления на уровне моря.

 

Диэлектрическую проницаемость тропо­сферы можно определить, измеряя темпера­туру, давление и влажность воздуха при помощи приборов, устанавливаемых на самолетах или шарах-зондах.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)