АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Особенности распространения волн оптического и инфракрасного диапазонов

Читайте также:
  1. I. ГИМНАСТИКА, ЕЕ ЗАДАЧИ И МЕТОДИЧЕСКИЕ ОСОБЕННОСТИ
  2. I. Рвота, причины рвоты. Особенности ухода при рвоте: пациент без сознания, в сознании, ослабленный. Возможные осложнения.
  3. III. Психические свойства личности – типичные для данного человека особенности его психики, особенности реализации его психических процессов.
  4. IV. Особенности правового регулирования труда беременных женщин
  5. V. Особенности развития предпринимательства
  6. V3: Основные черты и особенности политики военного коммунизма
  7. А. Основные особенности административной ответственности коллективных субъектов (организаций)
  8. Аграрная реформа 1861 г., ее механизм и особенности проведения в белорусских губерниях.
  9. Агрегатный индекс цен: особенности построения с учетом разных весов
  10. Административно-правовые отношения. Особенности административно-правовых отношений.
  11. Административное принуждение как один из административно – правовых методов. Понятие и особенности административного принуждения.
  12. Адыгея в Политико-экономическом пространстве России. Особенности проведения экономической реформы в республике.

Общие положения. К оптическому диапазону относятся электромагнитные колебания с длиной вол­ны 0,39—0,75 мкм. К инфракрасному (ИК) диапазону относятся волны длиной 0,75— 1000 мкм, занимающие промежуточное положение между оптическими и миллиметро­выми волнами. Инфракрасный диапазон де­лят на три области: ближнее инфракрасное излучение— от 0,75 до 1,5 мкм, среднее — от 1,5 до 5,6 мкм и дальнее — от 5,6 до 1000 мкм. Границы спектров оптических, инфракрасных и миллиметровых радиоволн взаимно перекрываются.

 

Оптические и ИК волны могут фоку­сироваться линзами и зеркалами, менять свое направление при отражении и прелом­лении, разлагаться в спектр призмами. ИК волны, подобно радиоволнам, могут прохо­дить сквозь некоторые материалы, непро­зрачные для оптических волн. ИК волны нашли широкое применение в различных от­раслях промышленности.

 

Главным преимуществом многих ИК систем является то, что можно использо­вать излучение от целей, которые или сами являются источниками ИК излучения или отражают излучение естественных ИК ис­точников. Такие системы называются пас­сивными. Активные ИК системы имеют мощный источник, излучение которого, от­фильтрованное в узком участке спектра, концентрируется с помощью оптической системы и направляется в виде узкого пучка на цель.

ИК системы обладают высокой разре­шающей способностью.

 

Ослабление оптических и инфракрасных волн в атмосфере. Полное ослабление оптических и ИК волн в атмосфере обусловлено несколькими факторами. Различают ослабление света в атмосфере, свободной от облаков и тумана, и ослабление света в тумане.

Ослабление в свободной атмосфере складывается из рассеяния света на моле­кулах газа и водяного пара и селективного поглощения. Мощность, которую несут све­товые и инфракрасные волны, прошедшие в атмосфере некоторое расстояние r, вычис­ляется аналогично мощности радиоволны:

где Г — суммарный коэффициент поглоще­ния в дБ/км, равный:

Г=Гг+Гп+Гсел+Гт.

 

Здесь Гг и Гп — коэффициенты ослаб­ления из-за рассеяния на молекулах газа и пара; Гсел — коэффициент селективного по­глощения; Гт — коэффициент поглощения в тумане.

Коэффициент ослабления из-за рассея­ния волн на молекулах газа Гг (дБ/км) при давлении воздуха р (МПа), температуре Т (К), и длине волны l (мкм) определяется следующим выражением:

Гг = 25p/Tl4.

 

Этот вид ослабления значительно мень­ше проявляется в инфракрасном диапазоне, чем в оптическом.

 

В свободной от облаков и тумана ат­мосфере содержатся частицы примесей — паров воды и пыли, на которых также рас­сеиваются оптические и ИК волны. Для характеристики пространственной картины рассеяния света каждой частицей пользу­ются понятием индикатрисы рассеяния (уг­ловой функции рассеяния), определяемой как отношение мощности, рассеянной частицей в данном направлении, к потоку энергии, рассеянному во все стороны (по­нятие, аналогичное диаграмме направлен­ности антенны). Индикатрисы рассеяния определены расчетным путем для сфериче­ских частиц различного радиуса а, имеющих разные коэффициенты преломления n. Малые частицы с а/l<<1 и n 1 имеют ин­дикатрису, описываемую законом синуса с максимумами в направлении прямого и об­ратного движения волны. При n → ∞ малые частицы рассеивают назад больше энергии, чем вперед. По мере роста а/l индикатри­са рассеяния прозрачных частиц становится все более вытянутой вперед (эффект Ми).

 


Размер частиц пыли и пара во много раз превышает длину волны, а число частиц не остается постоянным, что затрудняет расчеты коэффициента ослабления. Поэто­му предпочитают пользоваться экспериментальными данными для определения ослабления из-за рассеяния на этих части­цах. Опытным путем найдено, что коэф­фициент ослабления пропорционален l-1,75. Потери этого вида имеют наибольшую ве­личину в городах, на ИК волнах они мень­ше, чем на волнах оптического диапазона.

 

Селективное поглощение особенно ха­рактерно для ИК диапазона. На рис. 5.11 представлено распределение энергии в сол­нечном спектре, измеренном вблизи Земли для диапазона волн 0,3—2,2 мкм. Если бы не было селективного поглощения, то кри­вая имела плавный ход, обозначенный пунктирной линией. В видимой части спект­ра на волнах 0,4—0,75 мкм поглощение не­значительно, при длине волны 0,76 мкм наблюдается поглощение в кислороде. Участ­ки сильного поглощения имеются вблизи волн длиной 0,94; 1,10; 1,38 и 1,87 мкм. Это поглощение обусловлено наличием водяных паров в атмосфере, и прозрачность атмосферы для инфракрасных лучей сильно за­висит от влажности атмосферы.

 

 
 

 

 


 

 

Рис. 5.11. Распределение энергии в солнечном спектре вблизи Земли

 

 
 

 

 


Рис. 5.12. Спектр излучения чистого неба

 

Поглощающее действие оказывают уг­лекислый газ (на волнах 2,7; 4, 3 и 12 20 мкм) и озон (на волнах 4,7 и 9,6 мкм), но основное поглощающее действие оказы­вает водяной пар, поскольку его содержание намного превышает содержание углекислого газа и озона.

 

Измерения показали, что сравнительно, хорошей прозрачностью для инфракрасных лучей атмосфера обладает на следующих волнах: 0,95—1,05; 1,2—1,3; 1,5—1,8; 2, 1—2, 4; 3,3—4,0; 8, 0—12,0 мкм. В указанных пределах поглощением можно пренебречь, тогда как на промежуточных волнах и вол­нах длиннее 13,0 мкм происходит практически полное поглощение.

 

В каплях тумана происходят тепловые потери и рассеяние, как это имеет место в диапазоне миллиметровых и сантиметровых радиоволн. Потери тем больше, чем больше размер капель.

 

Рефракция оптических и инфракрасных волн в атмосфере. Различают астрономическую рефракцию — преломление лучей, идущих от небесного светила или другого источника, находящегося на небольшой высоте, к на­блюдателю, и земную рефракцию — преломление лучей, идущих от земных объектов.

 

Оптические и ближние ИК волны рефрагируют меньше, чем радиоволны. Коэффициент преломления тропосферы для ИК и оптических волн записывается в следующем виде (см. 3.1):

где — парциальное давление сухого воздуха (Па).

В случае астрономической рефракции, когда луч проходит всю толщу атмосферы, показатель преломления которой возрастает с приближением к поверхности Земли, траектория волны всегда обращена выпуклостью к зениту (положительная рефракция). Как и в случае радиоволн, явление рефракции приводит к ошибке в определении угла места.

Земная рефракция может быть как по­ложительной, так и отрицательной. В ус­ловиях нормальной рефракции дальность прямой видимости в оптическом и ИК диа­пазонах оказывается несколько меньше, чем в радиодиапазоне. Формула (3.5) прини­мает следующий вид:

 


Радиус кривизны траектории оптиче­ской волны составляет примерно 50 000 км. В оптическом и ИК диапазонах явление сверхфракции наблюдается реже, чем в ра­диодиапазоне. Со сверхрефракцией связано явление миража.

 

Распространение излучения оптических квантовых генераторов в атмосфере. Когерентность, высокая степень моно­хроматичности, большая направленность и мощность излучений оптических квантовых генераторов (ОКГ) вызывают соответст­вующие особенности распространения этих излучений в атмосфере. Ширина спектра многих ОКГ меньше ширины линий селек­тивного поглощения атмосферных газов. Поэтому для количественной оценки по­глощения излучения ОКГ необходимо иметь данные о селективном поглощении для фиксированных частот. Получение таких дан­ных затруднено ограниченной разрешающей способностью измерительной аппаратуры. Измерение селективного поглощения в диа­пазоне l = 0,69334 0,6694 мкм, в который попадает излучение ОКГ на рубине, показа­ли, что при изменении длины волны менее чем на 10-4 мкм поглощение изменяется от 0 до 80%.

 

Установлено, что при распространении пространственно ограниченных пучков в атмосфере рассеяние на частицах изменяет распределение мощности по сечению пучка излучения. Это распределение зависит от оптической толщины слоя, геометрии пучка, свойств среды.

 

Турбулентные неоднородности тропо­сферы вызывают серьезное ухудшение ус­ловий работы ИК радиолиний. Особенно существенно их влияние сказывается на распространении когерентного излучения. Турбулентности тропосферы нарушают ста­бильность фазового фронта когерентного луча, что приводит к его расширению и от­клонению и вызывает флуктуации ампли­туды.

 

Флуктуации амплитуды сигнала подчи­няются нормально- логарифмическому зако­ну распределения. Флуктуа­ции углов прихода пучка излучения харак­теризуются нормальным законом.

Получены некоторые данные, позволяю­щие судить о возможном расширении пуч­ков излучения ОКГ. При измерениях на расстояниях 15 и 145 км наблюдалось уве­личение расходимости пучка на 8" и 13" соответственно.

Вследствие этого не представляется возможным создать диаграммы направлен­ности ИК антенн шириной менее одной уг­ловой секунды.

 

Помехи в оптическом и инфракрасном диапазонах волн. Источник излучения, не являющийся целью, должен рассматриваться как излучение фона, мешающего работе оптической или ИК системы. Излучение фона проявляется как вредный шум, с которым следует бороться. Качественный вид спектральных характеристик излучения чистого неба днем 1 и ночью 2 представлен на рис.5.12.

 

Яркость неба зависит от атмосферного давления и зенитного угла, возрастая к го­ризонту. Облака создают неравномерность в излучении неба как днем, так и ночью, особенно на волнах короче 3 мкм. Наиболее серьезные помехи создают яркие края об­лаков, которые представляют собой ложные цели в ИК диапазоне.

 

Земля создает больший фон в ИК об­ласти спектра, чем чистое безоблачное не­бо, отражая коротковолновое излучение складывающееся с собственным тепловым излучение при больших длинах волн. Фон, создаваемый Землей, усложняет обнаружение наземных целей.

 

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)