|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Совокупность каких-либо n векторов, взятых из системы векторов ранга n, образующая линейно независимую систему, называется базисом исходной системы векторовУчитывая это определение, из ранее рассмотренного следует справедливость следующих утверждений: 1. Любая пара неколлинеарных векторов системы векторов на плоскости может быть взята как базис этой системы, т.е., если 2. Любая тройка некомпланарных векторов системы векторов в пространстве может быть взята как базис этой системы, т.е., если
Равенства Выбор базиса дает возможность однозначно поставить в соответствие каждому вектору системы упорядоченный набор чисел – координат вектора в выбранном базисе. И наоборот, каждому упорядоченному набору чисел в некотором базисе однозначно соответствует некоторый вектор.
Замечания: 1. Наиболее рационально выбирать в виде базиса орты или 2. Чтобы проверить линейную независимость векторов
3.Чтобы найти координаты вектора и решить эту систему уравнений любым из известных методов. Найденные значения переменных x,y,z есть координаты вектора
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |