|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Совокупность каких-либо n векторов, взятых из системы векторов ранга n, образующая линейно независимую систему, называется базисом исходной системы векторовУчитывая это определение, из ранее рассмотренного следует справедливость следующих утверждений: 1. Любая пара неколлинеарных векторов системы векторов на плоскости может быть взята как базис этой системы, т.е., если и - неколлинеарны и взяты как базис этой системы векторов на плоскости, то любой вектор этой системы может быть выражен через выбранный базис равенством: , где - координаты вектора относительно базиса и , т.е. 2. Любая тройка некомпланарных векторов системы векторов в пространстве может быть взята как базис этой системы, т.е., если - некомпланарны и взяты как базис системы векторов в пространстве, то любой вектор этой системы может быть выражен через выбранный базис равенством: , где - координаты вектора относительно базиса , т.е. .
Равенства и называются формулами разложения векторов системы по выбранным базисным векторам. Выбор базиса дает возможность однозначно поставить в соответствие каждому вектору системы упорядоченный набор чисел – координат вектора в выбранном базисе. И наоборот, каждому упорядоченному набору чисел в некотором базисе однозначно соответствует некоторый вектор.
Замечания: 1. Наиболее рационально выбирать в виде базиса орты и на плоскости и орты в пространстве, т.е., разложение в этих случаях имеет вид: или 2. Чтобы проверить линейную независимость векторов , надо составить определитель из координат этих векторов и найти его значение. Если векторы линейно независимы и образуют базис. Иначе, эти векторы называют компланарными. 3.Чтобы найти координаты вектора в данном базисе т.е., если выполняется равенство необходимо составить систему уравнений относительно переменных x,y,z: и решить эту систему уравнений любым из известных методов. Найденные значения переменных x,y,z есть координаты вектора в базисе
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.) |