АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Лекция №2 Клетка

Читайте также:
  1. Вводная лекция
  2. Вводная лекция.
  3. ВОСЕМНАДЦАТАЯ ЛЕКЦИЯ. Фиксация на травме, бессознательное
  4. ВОСЬМАЯ ЛЕКЦИЯ. ДЕТСКИЕ СНОВИДЕНИЯ
  5. ВТОРАЯ ЛЕКЦИЯ
  6. ВТОРАЯ ЛЕКЦИЯ. ОШИБОЧНЫЕ ДЕЙСТВИЯ
  7. Вторая лекция. Расширяющаяся Вселенная
  8. ВТОРАЯ ЛЕКЦИЯ. ЯМА.
  9. ВычМат лекция 3. (17.09.12)
  10. Генетическая инженерия и генетическая селекция растений.
  11. ДВАДЦАТЬ ВОСЬМАЯ ЛЕКЦИЯ. Аналитическая терапия
  12. ДВАДЦАТЬ ВТОРАЯ ЛЕКЦИЯ. Представление о развитии и регрессии. Этиология

Формы жизни на Земле:

 

  1. Доклеточные (вирусы).
  2. Клеточные (бактерии, грибы, растения, животные).

 

Классификация клеточных форм.

 

I. Прокариоты (Procariota) - доядерные

II. Эукариоты (Eucariota) - ядерные

 

Прокариоты – это бактерии. Возникли на Земле 3 – 3,5 млрд лет назад.

  1. Не имеют типичного ядра, заключенного в ядерную мембрану. Генетический материал представлен единственной нитью ДНК, образующей кольцо.
  2. Деление клетки амитотическое.
  3. Отсутствуют митохондрии, пластиды, центриоли, развитая система мембран.
  4. Имеют фотосинтетические мембраны, мезосомы, рибосомы. У некоторых видов имеются жгутики, капсула.

 

Эукариоты возникли 1 млрд лет назад.

  1. Имеют оформленное ядро.
  2. Деление клетки митотическое.
  3. Обладают мембранными органеллами (иногда с собственной ДНК– хлоропласты, митохондрии и др.).

Гипотезы происхождения эукариотических клеток.

Ископаемые останки эукариотических клеток обнаружены в ископаемых породах, возраст которых 1 – 1,4 млрд. лет. В настоящее время существует 3 гипотезы их происхождения.

  1. Симбиотическая (Т. Маргулис)
  2. Инвагинационная (Uzzell, 1974)
  3. Гипотеза клонирования.(Bogorad, 1975)

 

I. Симбиотическая гипотеза – наиболее распространённая. Её суть: родоначальником был анаэробный прокариот (бактерия), способный лишь к амебоидному движению. В него проникли аэробные бактерии, имеющие митохондрии. Такой симбиоз (сожительство) привел к изменению прокариот. У них появилось аэробное дыхание, жгутики (способствовали активному движению); из базальных телец жгутиков появились центриоли; проникновение в клетку – хозяина цианобактерий привело к появлению хлоропластов и способности к фотосинтезу. Серьёзным доказательством правильности этой гипотезы служит то, что митохондрии, центриоли и хлоропласты имеют собственную ДНК.

ЭПС, аппарат Гольджи, вакуоли стали производными наружной ядерной оболочки. Спорным остаётся вопрос о происхождении ядра. Предполагают, что оно образовалось путём слияния геномов симбионтов, т.е. ДНК клетки-хозяина и ДНК аэробного прокариота, проникшего в неё.Но есть и другое мнение – ядро возникло путём увеличения генома клетки хозяина.

 

II. Инвагинационная гипотеза.

Предком эукариотической клетки был аэробный прокариот. В нем внутри находилось несколько геномов, прикреплённых к клеточной оболочке. Эти геномы впячивались вместе с оболочкой, отшнуровывались и в дальнейшем специализировались в ядро, митохондрии, хлоропласты. Позже появились цитоплазмотические мембраны.

 

III. Гипотеза клонирования – менее приемлема, менее вероятна. Предшественник эукариотической клетки аэробный прокариот. В нем ядро и органеллы появляются в результате клонирования отдельных геномов клеток – хозяев.

 

Общий план строения эукариотической клетки:

  1. Плазмолемма – клеточная мембрана
  2. Цитоплазма
  3. Ядро.

 

Плазмолемма – элементарная биологическая мембрана. Существуют три модели её строения.

  1. Бутербродная
  2. Плетёного коврика
  3. Жидкостно-мозаичная (1972 г, Николсон, Сингер).

Наибльшей популярностью в настоящее время пользуется третья модель, согласно которой плазмолемма (как и другие клеточные мембраны) состоит из бимолекулярного слоя липидов, в который включены молекулы белков. Молекулы липидов имеют два полюса. Один обладает гидрофильными свойствами, его называют полярным, другой – гидрофобный (неполярный). В клеточных мембранах молекулы липидов обращены друг к другу неполярными полюсами. Белки мембран делят на 3 группы: периферические, интегральные и трансмембранные.

  1. Периферические белки располагаются на наружной поверхности билипидного слоя, выполняют роль мембранных рецепторов.
  2. Интегральные белки (погруженные) – частично погружены в липидный слой, образуя на мембране биохимический «конвейер», на котором протекают реакции превращения веществ.
  3. Трансмембранные белки (пронизывающие) – пронизывают всю толщу мембраны и обеспечивают передачу информации в двух направлениях: через мембрану в сторону цитоплазмы и обратно. На наружной поверхности плазмолеммы располагаются углеводы в виде гликолипидов и гликопротеидов, образуя особый слой – гликокаликс. В клетках растений плазмолемма снаружи покрыта клеточной оболочкой.

 

Функции плазмолеммы:

  1. Разграничительная.
  2. Рецепторная.
  3. Транспортная (участие в обмене веществ).
  4. Защитная.

 

Цитоплазма – обязательная часть клетки, заключенная между плазматической мембраной и ядром, высокоупорядоченная каллоидная система. В ней различают гиалоплазму, органеллы и включения.

Гиалоплазма – это водный гетерогенный коллоидный раствор белков, глюкозы, электролитов, фосфолипидов, холестерина. Она может находиться в двух состояниях: разжиженном (золь) и плотном (гель). Эти состояния могут переходить друг в друга при меняющихся условиях среды.

Функции гиалоплазмы:

1) транспортная

2) гомеостатическая

3) участие в обмене веществ

4) обеспечение оптимальных условий для функционирования органелл.

Органеллы – постоянные специализированные компоненты клетки, имеющие определенное строение и выполняющие определенные функции.

 

Классификация органелл по строению (мембранные, немембранные), по локализации (ядерные и цитоплазматические), по назначению (общего и специального назначения), по величине (видимые и невидимые в световой микроскоп).

 

Мембранные органеллы: ЭПС, аппарат Гольджи, лизосомы, пероксисомы, сферосомы, митохондрии, пластиды, вакуоли.

Эндоплазматическая сеть (ЭПС) – система мелких вакуолей и канальцев, соединенных друг с другом и ограниченных одинарной мембраной.

Различают:

1. Гладкую (агранулярную) ЭПС.

2. Шероховатую (гранулярную) ЭПС.

 

  1. Гладкая ЭПС – лишена рибосом. Состоит из сильно ветвящихся канальцев.

 

Функции гладкой ЭПС:

а) синтез углеводов и липидов;

б) накопление капелек липидов;

в) обмен гликогена;

г)накопление и выведение из клетки ядовитых веществ;

д) синтез стероидных гормонов.

 

  1. Гранулярная ЭПС – имеет рибосомы на мембранах. Состоит из канальцев и уплощенных цистерн.

 

Функции гранулярной ЭПС: участие в синтезе белков.

 

Комплекс Гольджи (аппарат Гольджи, пластинчатый комплекс) открыт К. Гольджи (1898 г.) Структурная функциональная единица его – диктиосома. Диктиосома - стопка из 3-12 уплощенных дискообразных цистерн. В клетке содержится до 20 диктиосом.

 

Функции комплекса Гольджи:

а) концентрация, обезвоживание и уплотнение внутриклеточного секрета;

б) синтез глико – и липопротеидов;

в) накопление и выведение веществ;

г) образование борозды деления при митозе;

д) образование первичных лизосом.

Лизосома – пузырек, окруженный одинарной мембраной, содержащий как в матриксе, так и в мембране набор гидролитрических ферментов – всего более 20. Выделяют первичные лизосомы – неактивные, которые превращаются во вторичные лизосомы. Последние делят на фаголизосомы – лизируют под действием ферментов вещества, поступившие извне, и аутолизосомы – разрушают собственные структуры клетки, отслужившие свой срок. Вторичные лизосомы, в которых процесс переваривания завершен, называют телолизосомами (остаточными тельцами).

 

Функции лизосом:

а) переваривание поглощенного материала

б)автолиз – переваривание частей самой клетки

в)удаление целых клеток и межклеточного вещества

г)разрушение бактерий и вирусов.

 

Пероксисома – пузырек, окруженный одинарной мембраной, содержащий пероксидазу.

 

Функции пероксиомы.: окисление различных органических веществ с помощью перекиси водорода.

 

Сферосома – овальная органелла, окруженная одинарной мембраной.

 

Функции сферосомы: - накопление и синтез жира.

 

Митохондрия – органелла, состоящая из матрикса, окруженного внутренней мембраной межмембранного пространства и наружной мембраны. В матриксе содержится кольцевая ДНК, рибосомы. Наружная мембрана гладкая, а внутренняя образует выпячивание (гребни).

 

Функции митохондрий – образование энергии (АТФ).

 

Вакуоли – полости в цитоплазме клеток, ограниченные мембраной и заполненные жидкостью. Имеются в норме в клетках растений и у одноклеточных животных. Обнаруживаются в стареющих или патологически изменённых клетках многоклеточных животных и человека. Образуются вакуоли из пузырьков аппарата Гольджи, расширений ЭПС, плазмолеммы. В клетках растений вакуоли наполнены клеточным соком, содержащим до 90% воды, в которой растворены простые белки, моно- и дисахариды, витамины, пигменты, органические кислоты, дубильные вещества.

У одноклеточных животных имеются пищеварительные и выделительные вакуоли. Пищеварительные вакуоли содержат воду, ферменты, минеральные соли. Их функция – расщепление сложных органических соединений до простых веществ.

Выделительные (сократительные) вакуоли выводят жидкие продукты обмена из клетки, поддерживают осмотическое давление, т.е. участвуют в осморегуляции.

Пластиды – органеллы специального назначения. Встречаются только в клетках растений. Их размножение (воспроизводство) происходит под контролем собственной ДНК.

Различают три вида пластид в зависимости от их окраски: хлоропласты, хромопласты и лейкопласты.

Хлоропласты – их зелёный цвет обусловлен пигментом хлорофиллом, который улавливает солнечную энергию, переводя её в энергию химических связей. Тело пластид состоит из гран-тилакоидов, разделённых мембранами. Тело окружено двухслойной оболочкой. На мембранах гран протекает световая фаза фотосинтеза, а на мембране тела –темновая. В состав хлоропластов входят белки, жиры, ДНК и РНК.

Хромопласты – окрашены в оранжево-красный цвет, обусловленный пигментом каротином, желтый – пигментом ксантофиллом, красный – ликопином. Форма хромопластов разнообразная-палочковидная, округлая, серповидная. Они участвуют в фотосинтезе и окрашивают плоды, ягоды,корнеплоды, листья.

Лейкопласты – бесцветные пластиды. По форме сходны с хромопластами. Содержатся в мякоти плодов, корнеплодов. Они накапливают или синтезируют крахмал, жиры, белки.

 

Немембранные органеллы – рибосомы, центросома, микротрубочки, микрофиламенты.

 

Рибосомы – небольшие сферические тельца, расположенные в гиалоплазме или на канальцах ЭПС. Количество их в клетках различно. Особо богаты рибосомами клетки, секретирующие белок. В состав рибосом входят специальные белки, магний, р-РНК. Каждая рибосома состоит из двух субъединиц (большой и малой), в каждой из них содержится по одной молекуле р-РНК в виде свёрнутого тяжа, а между ними – белок.

Функция рибосом – синтез белков. Обычно рибосомы объеденены в группы по 5 – 70 штук – полисомы (полирибосомы). Образуются рибосомы в ядрышках.

 

Центросома (клеточный центр) хорошо видна под световым микроскопом. Состоит из двух центриолей и лучистой сферы. Каждая центриоль представляет из себя цилиндр, стенки которого образованы 9 триплетами параллельно рпасположенных микротрубочек. В клетках высших растений центриоли отсутствуют.

Функции центриоли - определяют полюса дочерних клеток при делении; лучистая сфера формирует короткие и длинные нити ахроматинового веретена.

 

Микротрубочки – тончайшие трубочки разной длины. Их стенка состоит из белка тубулина. Располагаются свободно в цитоплазме клетки или являются структурными элементами жгутиков, ресничек, митотического веретена, центриолей. В свободном состоянии микротрубочки выполняют опорную функцию, определяя форму клеток.(являясь «цитоскелетом»). Кроме того, они определяют направление перемещения внутриклеточных структур (например, расхождение хромосом при делении ядра) – сократительная функция.

Микрофиламенты – тонкие нити, состоящие из белка актина и миозина. Располагаются под плазмолеммой многих эукариот клеток. Например, в эритроцитах сеть микрофиламентов прикрепляется к белкам мембраны и определяет не только форму, но и гибкость эритроцитов, позволяя проходить им по самым узким капиллярам. Другой пример. Клетки кишечного эпителия имеют около1000 микроворсинок, увеличивающих площадь всасывания. В каждой микроворсинке содержится транспортная система, состоящая из пучка микрофиламентов, связанных с белками плазмолеммы и с горизонтальной сетью микрофиламентов. Т.е. пучок микрофиламентов выполняет роль арматурного стержня, придающего ворсинке устойчивость.

 

 

Включения – непостоянные компоненты клеток, имеющие определённое строение и выполняющие определённые функции.

Группы включений:

1. Трофические

2. Минеральные

3. Пигментные

4. Витаминные

5. Секреторные

6. Экскреторные

 

Ядро – nucleus (лат.), carion (греч.)

Открыто ядро в клетке в 1833 году английским цитологом Р. Броуном. В клетке может быть одно или несколько ядер. Оно располагается в центре клетки или на периферии. Форма ядра может быть овальной, круглой, сегментированной (в лейкоцитах крови). Ядро присутствует во всех эукариотических клетках (за исключением эритроцитов и тромбоцитов крови человека; они утратили его в процессе гемопоэза).

Ядро имеет ядерную оболочку (кариолемму), ядерный сок (кариоплазму), ядрышко, хроматин, ядерный белковый остов (матрикс).

 

Ядерная оболочка состоит из двух мембран – внешней и внутренней, между которыми находится перинуклеарное пространство.

Внешняя и внутренняя мембраны ядерной оболочки имеют все характерные признаки клеточных мембран: билипидный слой, широкий спектр встроенных белков и др.

Внешняя мембрана ядерной оболочки имеет ряд особенностей, указывающих на её структурное и функциональное единство с мембранами шероховатой ЭПС

  • части внешней мембраны ядерной оболочки могут переходить в мембраны систем каналов ЭПС;
  • на определённой части внешней мембране ядерной оболочки всегда имеются прикреплённые полные рибосомы;
  • от этих участков внешней мембраны ядрной оболочки периодически отпочковываются вакуоли (везикулы), транспортирующие вновь образованные белки непосредственно в цис – часть аппарата Гольджи, минуя шероховатую ЭПС.

 

Внутренняя мембрана ядерной оболочки связана с ядерной ламиной (фиброзный элемент цитоскелета), которая, «заякоривая» хроматин, обеспечивает его связь с внутренней мембраной ядерной оболочки.

Ядерные ламины образуют фибриллы диаметром 10 нм, которые под внутренней мембраной ядерной оболочки со стороны кариоплазмы формируют ортогональные структуры и рыхло расположенную фибриллярную сеть.

Эти структуры обеспечивают связь внутренней мембраны ядерной оболочки с хроматином, а так же выполняют поддерживающую функцию, как элементы цитоскелета, связаны с ядерной порой.

Двухмембранная ядерная оболочка имеет ядерные поры. Эти тоннельные образования диаметром около 100 нм и высотой примерно 75 нм пронизывают ядерную оболочку насквозь.

Ядерные поры – сложные образования, состоящие из нескольких компонентов белковой природы. Совокупность структур, образующих ядерные поры, обозначают как ядерный поровый комплекс (ЯПК).

 

Функции плазмолеммы – 1) защитная, 2) транспортная

 

Ядерный сок – по физическому состоянию аналогичен гиалоплазме, несколько более вязкий раствор белков, ионов, нуклеотидов, а по химическому – отличается содержанием белков, нуклеиновых кислот и ферментов.

 

Ядрышко – плотное тельце внутри ядра большинства клеток эукариот. В ядре может быть одно или несколько ядрышек. Ядрышко формируется на определенных локусах хромосом (ядрышковых организаторах), где находятся серии генов, кодирующих р – РНК и т – РНК. Ядрышко образуется на внехромосомных копиях ядрышкового организатора.

Функции ядрышка – синтез р – РНК, т – РНК и рибосом.

 

Хроматин (греч. сhroma – цвет, краска) – нуклеопротеидные нити (деспирализованные молекулы ДНК), из которых состоят хромосомы клеток эукариот. Хроматин – дисперсное состояние хромосом в интерфазе клеточного цикла. Основные структурные компоненты хроматина – ДНК(30-45%), гистоны и негистоновые белки. (4-33%), остатки м-РНК, ферменты, липиды, полисахариды, ионы металлов.

Различают две формы хроматина:

Эухроматин (диффузный) – генетически активный и гетерохроматин (конденсированный) – генетически неактивный (например одна х-хромосома у женщин, дающая тельце Барра). Наиболее конденсированные участки эухроматина называют хромомерами.

Во время деления клетки хроматин окрашивается интенсивнее, происходит его конденсация – образование более спирализованных нитей, называемых хромосомами (окрашенные тела).

 

Хромосомы – органеллы ядра, являющиеся носителями генов и определяющие наследственные свойства клеток и организмов.

Основу хромосомы составляет одна непрерывная двухцепочная молекула ДНК (99%), связанная с белками (гистонами и др.) в нуклеопротеид. Каждая хромосома состоит из двух продольных субъединиц – хроматид; каждая хроматида состоит из двух полухроматид, каждая полухроматида состоит из хромонем, которые представляют из себя полинуклеотидные нити ДНК. Хроматиды соединяются между собой в области первичной перетяжки – центромеры. Это наименее спирализованный, практически неокрашиваемы участок хромосомы, к которому прикрепляются нити веретена деления. Центромера делит хромосому на два плеча. Концы плеч хромосом называют теломерами, которые препятствуют соединению хромосом друг с другом. Некоторые хромосомы имеют вторичную перетяжку, которая отделяет часть хромосомы, названную спутником.

В зависимости от расположения центромеры в хромосоме различают хромосомы:

  1. Метацентрические – (равноплечие) центромера расположена посередине, плечи равны;
  2. Субметацентрические – (неравноплечие) – центромера незначительно смещена от центра хромосомы - плечи неравной величены;
  3. Акроцентрические (палочковидные) – центромера находится у края.
  4. Телоцентрические – одно плечо отрывается, остаётся одно плечо и центромера располагается на конце.

Хромосомы, одинаковые по форме, размерам, строению у особей женского и мужского пола, назвали аутосомами, а одну пару хромосом, отличающуюся у особей разного пола – половыми хромосомами (гетерохромосомами).

Хромосомы обладают рядом свойств:

  1. Постоянство числа – у организмов одного вида число хромосом в норме постоянно.

(у человека – 46, аскариды – 2, дрозофилы – 8, речного рака – 16, голубя – 80, кролика – 44, шимпанзе – 48)

  1. Парность – в соматических клетках имеются две одинаковые хромосомы – гомологичные.
  2. Индивидуальность – каждая пара хромосом имеет свои особенности: размер, форму, место расположения центромеры, набор генов и т.д.
  3. Непрерывность – "каждая хромосома от хромосомы".

Функции хромосом:

  1. Передача наследственной информации.
  2. Хранение наследственной информации.
  3. Реализация наследственной информации в ходе биосинтеза белка.

В 1924 году отечественный цитолог Г.А. Левитский ввел в науку термин кариотип – это диплоидный набор хромосом, характеризующийся их числом, величиной и формой. Для изучения кариотипа человека обычно используют клетки костного мозга, культуры фибробластов или лейкоцитов крови (их легче получить).

Методика не очень сложная. К культуре клеток добавляют химическое вещество колхицин (он останавливает деление клеток на стадии метафазы). Затем клетки обрабатывают гипотоническим раствором (отделяют хромосомы друг от друга), фиксируют и окрашивают. Благодаря такой обработке каждая хромосома чётко видна в световом микроскопе.

Чтобы легче было разобраться в сложном комплексе хромосом, составляющих кариотип, их располагают в виде идиограммы (греч. idios – своеобразный, gramme – запись). Термин и метод был предложен нашим соотечественником – цитологом С.Г. Навашином.

В идиограмме по денверской классификации 1960 года хромосомы располагаются попарно в порядке убывающей величины. Исключение делают для половых хромосом, которые выделяются особо. Самой крупной паре присвоен номер 1, а самой маленькой – 22. Так как не всегда точно можно определить нарушение какой хромосомы произошло, то их объединяют в группы А, В, С и т.д.(на практическом занятии будем составлять идиограммы разных кариотипов).


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.014 сек.)