|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Лекция №2 КлеткаФормы жизни на Земле:
Классификация клеточных форм.
I. Прокариоты (Procariota) - доядерные II. Эукариоты (Eucariota) - ядерные
Прокариоты – это бактерии. Возникли на Земле 3 – 3,5 млрд лет назад.
Эукариоты возникли 1 млрд лет назад.
Гипотезы происхождения эукариотических клеток. Ископаемые останки эукариотических клеток обнаружены в ископаемых породах, возраст которых 1 – 1,4 млрд. лет. В настоящее время существует 3 гипотезы их происхождения.
I. Симбиотическая гипотеза – наиболее распространённая. Её суть: родоначальником был анаэробный прокариот (бактерия), способный лишь к амебоидному движению. В него проникли аэробные бактерии, имеющие митохондрии. Такой симбиоз (сожительство) привел к изменению прокариот. У них появилось аэробное дыхание, жгутики (способствовали активному движению); из базальных телец жгутиков появились центриоли; проникновение в клетку – хозяина цианобактерий привело к появлению хлоропластов и способности к фотосинтезу. Серьёзным доказательством правильности этой гипотезы служит то, что митохондрии, центриоли и хлоропласты имеют собственную ДНК. ЭПС, аппарат Гольджи, вакуоли стали производными наружной ядерной оболочки. Спорным остаётся вопрос о происхождении ядра. Предполагают, что оно образовалось путём слияния геномов симбионтов, т.е. ДНК клетки-хозяина и ДНК аэробного прокариота, проникшего в неё.Но есть и другое мнение – ядро возникло путём увеличения генома клетки хозяина.
II. Инвагинационная гипотеза. Предком эукариотической клетки был аэробный прокариот. В нем внутри находилось несколько геномов, прикреплённых к клеточной оболочке. Эти геномы впячивались вместе с оболочкой, отшнуровывались и в дальнейшем специализировались в ядро, митохондрии, хлоропласты. Позже появились цитоплазмотические мембраны.
III. Гипотеза клонирования – менее приемлема, менее вероятна. Предшественник эукариотической клетки аэробный прокариот. В нем ядро и органеллы появляются в результате клонирования отдельных геномов клеток – хозяев.
Общий план строения эукариотической клетки:
Плазмолемма – элементарная биологическая мембрана. Существуют три модели её строения.
Наибльшей популярностью в настоящее время пользуется третья модель, согласно которой плазмолемма (как и другие клеточные мембраны) состоит из бимолекулярного слоя липидов, в который включены молекулы белков. Молекулы липидов имеют два полюса. Один обладает гидрофильными свойствами, его называют полярным, другой – гидрофобный (неполярный). В клеточных мембранах молекулы липидов обращены друг к другу неполярными полюсами. Белки мембран делят на 3 группы: периферические, интегральные и трансмембранные.
Функции плазмолеммы:
Цитоплазма – обязательная часть клетки, заключенная между плазматической мембраной и ядром, высокоупорядоченная каллоидная система. В ней различают гиалоплазму, органеллы и включения. Гиалоплазма – это водный гетерогенный коллоидный раствор белков, глюкозы, электролитов, фосфолипидов, холестерина. Она может находиться в двух состояниях: разжиженном (золь) и плотном (гель). Эти состояния могут переходить друг в друга при меняющихся условиях среды. Функции гиалоплазмы: 1) транспортная 2) гомеостатическая 3) участие в обмене веществ 4) обеспечение оптимальных условий для функционирования органелл. Органеллы – постоянные специализированные компоненты клетки, имеющие определенное строение и выполняющие определенные функции.
Классификация органелл по строению (мембранные, немембранные), по локализации (ядерные и цитоплазматические), по назначению (общего и специального назначения), по величине (видимые и невидимые в световой микроскоп).
Мембранные органеллы: ЭПС, аппарат Гольджи, лизосомы, пероксисомы, сферосомы, митохондрии, пластиды, вакуоли. Эндоплазматическая сеть (ЭПС) – система мелких вакуолей и канальцев, соединенных друг с другом и ограниченных одинарной мембраной. Различают: 1. Гладкую (агранулярную) ЭПС. 2. Шероховатую (гранулярную) ЭПС.
Функции гладкой ЭПС: а) синтез углеводов и липидов; б) накопление капелек липидов; в) обмен гликогена; г)накопление и выведение из клетки ядовитых веществ; д) синтез стероидных гормонов.
Функции гранулярной ЭПС: участие в синтезе белков.
Комплекс Гольджи (аппарат Гольджи, пластинчатый комплекс) открыт К. Гольджи (1898 г.) Структурная функциональная единица его – диктиосома. Диктиосома - стопка из 3-12 уплощенных дискообразных цистерн. В клетке содержится до 20 диктиосом.
Функции комплекса Гольджи: а) концентрация, обезвоживание и уплотнение внутриклеточного секрета; б) синтез глико – и липопротеидов; в) накопление и выведение веществ; г) образование борозды деления при митозе; д) образование первичных лизосом. Лизосома – пузырек, окруженный одинарной мембраной, содержащий как в матриксе, так и в мембране набор гидролитрических ферментов – всего более 20. Выделяют первичные лизосомы – неактивные, которые превращаются во вторичные лизосомы. Последние делят на фаголизосомы – лизируют под действием ферментов вещества, поступившие извне, и аутолизосомы – разрушают собственные структуры клетки, отслужившие свой срок. Вторичные лизосомы, в которых процесс переваривания завершен, называют телолизосомами (остаточными тельцами).
Функции лизосом: а) переваривание поглощенного материала б)автолиз – переваривание частей самой клетки в)удаление целых клеток и межклеточного вещества г)разрушение бактерий и вирусов.
Пероксисома – пузырек, окруженный одинарной мембраной, содержащий пероксидазу.
Функции пероксиомы.: окисление различных органических веществ с помощью перекиси водорода.
Сферосома – овальная органелла, окруженная одинарной мембраной.
Функции сферосомы: - накопление и синтез жира.
Митохондрия – органелла, состоящая из матрикса, окруженного внутренней мембраной межмембранного пространства и наружной мембраны. В матриксе содержится кольцевая ДНК, рибосомы. Наружная мембрана гладкая, а внутренняя образует выпячивание (гребни).
Функции митохондрий – образование энергии (АТФ).
Вакуоли – полости в цитоплазме клеток, ограниченные мембраной и заполненные жидкостью. Имеются в норме в клетках растений и у одноклеточных животных. Обнаруживаются в стареющих или патологически изменённых клетках многоклеточных животных и человека. Образуются вакуоли из пузырьков аппарата Гольджи, расширений ЭПС, плазмолеммы. В клетках растений вакуоли наполнены клеточным соком, содержащим до 90% воды, в которой растворены простые белки, моно- и дисахариды, витамины, пигменты, органические кислоты, дубильные вещества. У одноклеточных животных имеются пищеварительные и выделительные вакуоли. Пищеварительные вакуоли содержат воду, ферменты, минеральные соли. Их функция – расщепление сложных органических соединений до простых веществ. Выделительные (сократительные) вакуоли выводят жидкие продукты обмена из клетки, поддерживают осмотическое давление, т.е. участвуют в осморегуляции. Пластиды – органеллы специального назначения. Встречаются только в клетках растений. Их размножение (воспроизводство) происходит под контролем собственной ДНК. Различают три вида пластид в зависимости от их окраски: хлоропласты, хромопласты и лейкопласты. Хлоропласты – их зелёный цвет обусловлен пигментом хлорофиллом, который улавливает солнечную энергию, переводя её в энергию химических связей. Тело пластид состоит из гран-тилакоидов, разделённых мембранами. Тело окружено двухслойной оболочкой. На мембранах гран протекает световая фаза фотосинтеза, а на мембране тела –темновая. В состав хлоропластов входят белки, жиры, ДНК и РНК. Хромопласты – окрашены в оранжево-красный цвет, обусловленный пигментом каротином, желтый – пигментом ксантофиллом, красный – ликопином. Форма хромопластов разнообразная-палочковидная, округлая, серповидная. Они участвуют в фотосинтезе и окрашивают плоды, ягоды,корнеплоды, листья. Лейкопласты – бесцветные пластиды. По форме сходны с хромопластами. Содержатся в мякоти плодов, корнеплодов. Они накапливают или синтезируют крахмал, жиры, белки.
Немембранные органеллы – рибосомы, центросома, микротрубочки, микрофиламенты.
Рибосомы – небольшие сферические тельца, расположенные в гиалоплазме или на канальцах ЭПС. Количество их в клетках различно. Особо богаты рибосомами клетки, секретирующие белок. В состав рибосом входят специальные белки, магний, р-РНК. Каждая рибосома состоит из двух субъединиц (большой и малой), в каждой из них содержится по одной молекуле р-РНК в виде свёрнутого тяжа, а между ними – белок. Функция рибосом – синтез белков. Обычно рибосомы объеденены в группы по 5 – 70 штук – полисомы (полирибосомы). Образуются рибосомы в ядрышках.
Центросома (клеточный центр) хорошо видна под световым микроскопом. Состоит из двух центриолей и лучистой сферы. Каждая центриоль представляет из себя цилиндр, стенки которого образованы 9 триплетами параллельно рпасположенных микротрубочек. В клетках высших растений центриоли отсутствуют. Функции центриоли - определяют полюса дочерних клеток при делении; лучистая сфера формирует короткие и длинные нити ахроматинового веретена.
Микротрубочки – тончайшие трубочки разной длины. Их стенка состоит из белка тубулина. Располагаются свободно в цитоплазме клетки или являются структурными элементами жгутиков, ресничек, митотического веретена, центриолей. В свободном состоянии микротрубочки выполняют опорную функцию, определяя форму клеток.(являясь «цитоскелетом»). Кроме того, они определяют направление перемещения внутриклеточных структур (например, расхождение хромосом при делении ядра) – сократительная функция. Микрофиламенты – тонкие нити, состоящие из белка актина и миозина. Располагаются под плазмолеммой многих эукариот клеток. Например, в эритроцитах сеть микрофиламентов прикрепляется к белкам мембраны и определяет не только форму, но и гибкость эритроцитов, позволяя проходить им по самым узким капиллярам. Другой пример. Клетки кишечного эпителия имеют около1000 микроворсинок, увеличивающих площадь всасывания. В каждой микроворсинке содержится транспортная система, состоящая из пучка микрофиламентов, связанных с белками плазмолеммы и с горизонтальной сетью микрофиламентов. Т.е. пучок микрофиламентов выполняет роль арматурного стержня, придающего ворсинке устойчивость.
Включения – непостоянные компоненты клеток, имеющие определённое строение и выполняющие определённые функции. Группы включений: 1. Трофические 2. Минеральные 3. Пигментные 4. Витаминные 5. Секреторные 6. Экскреторные
Ядро – nucleus (лат.), carion (греч.) Открыто ядро в клетке в 1833 году английским цитологом Р. Броуном. В клетке может быть одно или несколько ядер. Оно располагается в центре клетки или на периферии. Форма ядра может быть овальной, круглой, сегментированной (в лейкоцитах крови). Ядро присутствует во всех эукариотических клетках (за исключением эритроцитов и тромбоцитов крови человека; они утратили его в процессе гемопоэза). Ядро имеет ядерную оболочку (кариолемму), ядерный сок (кариоплазму), ядрышко, хроматин, ядерный белковый остов (матрикс).
Ядерная оболочка состоит из двух мембран – внешней и внутренней, между которыми находится перинуклеарное пространство. Внешняя и внутренняя мембраны ядерной оболочки имеют все характерные признаки клеточных мембран: билипидный слой, широкий спектр встроенных белков и др. Внешняя мембрана ядерной оболочки имеет ряд особенностей, указывающих на её структурное и функциональное единство с мембранами шероховатой ЭПС
Внутренняя мембрана ядерной оболочки связана с ядерной ламиной (фиброзный элемент цитоскелета), которая, «заякоривая» хроматин, обеспечивает его связь с внутренней мембраной ядерной оболочки. Ядерные ламины образуют фибриллы диаметром 10 нм, которые под внутренней мембраной ядерной оболочки со стороны кариоплазмы формируют ортогональные структуры и рыхло расположенную фибриллярную сеть. Эти структуры обеспечивают связь внутренней мембраны ядерной оболочки с хроматином, а так же выполняют поддерживающую функцию, как элементы цитоскелета, связаны с ядерной порой. Двухмембранная ядерная оболочка имеет ядерные поры. Эти тоннельные образования диаметром около 100 нм и высотой примерно 75 нм пронизывают ядерную оболочку насквозь. Ядерные поры – сложные образования, состоящие из нескольких компонентов белковой природы. Совокупность структур, образующих ядерные поры, обозначают как ядерный поровый комплекс (ЯПК).
Функции плазмолеммы – 1) защитная, 2) транспортная
Ядерный сок – по физическому состоянию аналогичен гиалоплазме, несколько более вязкий раствор белков, ионов, нуклеотидов, а по химическому – отличается содержанием белков, нуклеиновых кислот и ферментов.
Ядрышко – плотное тельце внутри ядра большинства клеток эукариот. В ядре может быть одно или несколько ядрышек. Ядрышко формируется на определенных локусах хромосом (ядрышковых организаторах), где находятся серии генов, кодирующих р – РНК и т – РНК. Ядрышко образуется на внехромосомных копиях ядрышкового организатора. Функции ядрышка – синтез р – РНК, т – РНК и рибосом.
Хроматин (греч. сhroma – цвет, краска) – нуклеопротеидные нити (деспирализованные молекулы ДНК), из которых состоят хромосомы клеток эукариот. Хроматин – дисперсное состояние хромосом в интерфазе клеточного цикла. Основные структурные компоненты хроматина – ДНК(30-45%), гистоны и негистоновые белки. (4-33%), остатки м-РНК, ферменты, липиды, полисахариды, ионы металлов. Различают две формы хроматина: Эухроматин (диффузный) – генетически активный и гетерохроматин (конденсированный) – генетически неактивный (например одна х-хромосома у женщин, дающая тельце Барра). Наиболее конденсированные участки эухроматина называют хромомерами. Во время деления клетки хроматин окрашивается интенсивнее, происходит его конденсация – образование более спирализованных нитей, называемых хромосомами (окрашенные тела).
Хромосомы – органеллы ядра, являющиеся носителями генов и определяющие наследственные свойства клеток и организмов. Основу хромосомы составляет одна непрерывная двухцепочная молекула ДНК (99%), связанная с белками (гистонами и др.) в нуклеопротеид. Каждая хромосома состоит из двух продольных субъединиц – хроматид; каждая хроматида состоит из двух полухроматид, каждая полухроматида состоит из хромонем, которые представляют из себя полинуклеотидные нити ДНК. Хроматиды соединяются между собой в области первичной перетяжки – центромеры. Это наименее спирализованный, практически неокрашиваемы участок хромосомы, к которому прикрепляются нити веретена деления. Центромера делит хромосому на два плеча. Концы плеч хромосом называют теломерами, которые препятствуют соединению хромосом друг с другом. Некоторые хромосомы имеют вторичную перетяжку, которая отделяет часть хромосомы, названную спутником. В зависимости от расположения центромеры в хромосоме различают хромосомы:
Хромосомы, одинаковые по форме, размерам, строению у особей женского и мужского пола, назвали аутосомами, а одну пару хромосом, отличающуюся у особей разного пола – половыми хромосомами (гетерохромосомами). Хромосомы обладают рядом свойств:
(у человека – 46, аскариды – 2, дрозофилы – 8, речного рака – 16, голубя – 80, кролика – 44, шимпанзе – 48)
Функции хромосом:
В 1924 году отечественный цитолог Г.А. Левитский ввел в науку термин кариотип – это диплоидный набор хромосом, характеризующийся их числом, величиной и формой. Для изучения кариотипа человека обычно используют клетки костного мозга, культуры фибробластов или лейкоцитов крови (их легче получить). Методика не очень сложная. К культуре клеток добавляют химическое вещество колхицин (он останавливает деление клеток на стадии метафазы). Затем клетки обрабатывают гипотоническим раствором (отделяют хромосомы друг от друга), фиксируют и окрашивают. Благодаря такой обработке каждая хромосома чётко видна в световом микроскопе. Чтобы легче было разобраться в сложном комплексе хромосом, составляющих кариотип, их располагают в виде идиограммы (греч. idios – своеобразный, gramme – запись). Термин и метод был предложен нашим соотечественником – цитологом С.Г. Навашином. В идиограмме по денверской классификации 1960 года хромосомы располагаются попарно в порядке убывающей величины. Исключение делают для половых хромосом, которые выделяются особо. Самой крупной паре присвоен номер 1, а самой маленькой – 22. Так как не всегда точно можно определить нарушение какой хромосомы произошло, то их объединяют в группы А, В, С и т.д.(на практическом занятии будем составлять идиограммы разных кариотипов). Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.014 сек.) |