|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
ЭЛЕКТРОННАЯ ЛАМПА
Изобретение электронной лампы напрямую связано с развитием техники освещения. В начале 80-х годов XIX века знаменитый американский изобретатель Эдисон занимался усовершенствованием лампы накаливания. Одним из ее недостатков было постепенное уменьшение световой отдачи из-за потускнения баллона вследствие появления темного пятна на внутренней стороне стекла. Исследуя в 1883 году причины этого эффекта, Эдисон заметил, что часто на потускневшем стекле баллона в плоскости петли нити оставалась светлая, почти незатемненная полоса, причем эта полоса всегда оказывалась с той стороны лампы, где находился положительный ввод накальной цепи. Дело выглядело так, будто часть угольной нити накала, примыкающая к отрицательному вводу, испускала из себя мельчайшие материальные частицы. Пролетая мимо положительной стороны нити, они покрывали внутреннюю сторону стеклянного баллона всюду, за исключением той линии на поверхности стекла, которая как бы заслонялась положительной стороной нити. Картина этого явления стала более очевидна, когда Эдисон ввел внутрь стеклянного баллона небольшую металлическую пластину, расположив ее между вводами нити накала. Соединив эту пластинку через гальванометр с положительным электродом нити, можно было наблюдать текущий через пространство внутри баллона электрический ток.
Эдисон предположил, что поток угольных частичек, испускаемых отрицательной стороной нити, делает часть пути между нитью и введенной им пластинкой проводящим, и установил, что поток этот пропорционален степени накала нити, или, другими словами, световой мощи самой лампы. На этом, собственно, и заканчивается исследование Эдисона. Американский изобретатель не мог тогда и представить, на пороге какого величайшего научного открытия он стоял. Прошло почти 20 лет, прежде чем наблюдавшееся Эдисоном явление получило свое правильное всестороннее объяснение.
Оказалось, что при сильном нагревании нити лампы, помещенной в вакуум, она начинает испускать в окружающее пространство электроны. Этот процесс получил название термоэлектронной эмиссии, и его можно рассматривать как испарение электронов из материала нити. Мысль о возможности практического использования «эффекта Эдисона» впервые пришла в голову английскому ученому Флемингу, который в 1904 году создал основанный на этом принципе детектор, получивший название «двухэлектродной трубки», или «диода» Флеминга. Лампа Флеминга представляла собой обычный стеклянный баллон, заполненный разреженным газом. Внутри баллона помещалась нить накала вместе с охватывавшим ее металлическим цилиндром. Нагретый электрод лампы непрерывно испускал электроны, которые образовывали вокруг него «электронное облако». Чем выше была температура электрода, тем выше оказывалась плотность электронного облака. При подключении электродов лампы к источнику тока между ними возникало электрическое поле. Если положительный полюс источника соединяли с холодным электродом (анодом), а отрицательный — с нагретым (катодом), то под действием электрического поля электроны частично покидали электронное облако и устремлялись к холодному электроду. Таким образом между катодом и анодом устанавливался электрический ток. При противоположном включении источника отрицательно заряженный анод отталкивал от себя электроны, а положительно заряженный катод — притягивал. В этом случае электрического тока не возникало. То есть диод Флеминга обладал ярко выраженной односторонней проводимостью. Будучи включенной в приемную схему, лампа действовала подобно выпрямителю, пропуская ток в одном направлении и не пропуская в обратном, и могла служить таким образом волноуказателем — детектором. Для некоторого повышения чувствительности лампы подавался соответствующим образом подобранный положительный потенциал. В принципе приемная схема с лампой Флеминга почти ничем не отличалась от других радиосхем того времени. Она уступала в чувствительности схеме с детектором магнитного типа, но обладала несравненно большей надежностью.
Дальнейшим выдающимся достижением в области совершенствования и технического применения электронной лампы стало изобретение в 1907 году американским инженером Де Форестом лампы, содержащей дополнительный третий электрод. Этот третий электрод был назван изобретателем «сеткой», а сама лампа — «аудином», но в практике за ней закрепилось другое название — «триод». Третий электрод, как это видно уже из его названия, был не сплошным и мог пропускать электроны, летевшие от катода к аноду. Когда между сеткой и катодом включался источник напряжения, между этими электродами возникало электрическое поле, сильно влияющее на количество электронов, достигающих анода, то есть на силу тока, текущего через лампу (силу анодного тока). При уменьшении напряжения, подаваемого на сетку, сила анодного тока уменьшалась, при увеличении — возрастала. Если на сетку подавали отрицательное напряжение, анодный ток вообще прекращался — лампа оказывалась «запертой». Замечательное свойство триода состояло в том, что управляющий ток мог быть во много раз меньше основного — ничтожные изменения напряжения между сеткой и катодом вызывали довольно значительные изменения анодного тока. Последнее обстоятельство позволяло использовать лампу для усиления малых переменных напряжений и открывало перед ней необычайно широкие возможности для практического применения. Появление трехэлектродной лампы повлекло за собой быструю эволюцию радиоприемных схем, так как возникла возможность в десятки и сотни раз усиливать принимаемый сигнал. Многократно возросла чувствительность приемников. Одна из ранних схем лампового приемника была предложена уже в 1907 году тем же Де Форестом.
Между антенной и заземлением здесь включен контур LC, на зажимах которого возникает переменное напряжение высокой частоты, образовавшееся под действием энергии, полученной из антенны. Это напряжение подавалось на сетку лампы и управляло колебаниями анодного тока. Таким образом, в анодной цепи получались усиленные колебания принимаемого сигнала, которые могли приводить в движение мембрану телефона, включенного в ту же цепь.
Первая трехэлектродная лампа-аудин Де Фореста имела множество недостатков. Расположение электродов в ней было таким, что большая часть электронного потока попадала не на анод, а на стеклянный баллон. Управляющее влияние сетки оказывалось недостаточным. Лампа была плохо откачана и содержала значительное число молекул газа. Они ионизировались и непрерывно бомбардировали нить накала, оказывая на нее разрушительное воздействие.
В 1910 году немецкий инженер Либен создал усовершенствованную электронную лампу-триод, в которой сетка была выполнена в форме перфорированного листа алюминия и помещалась в центре баллона, деля его на две части. В нижней части лампы находилась нить накала, в верхней — анод. Такое расположение сетки позволяло усиливать ее управляющее действие, так как через нее проходил весь электронный поток. Анод в этой лампе имел форму прутика или спирали из алюминиевой проволоки, а катодом служила платиновая нить. Особое внимание Либен обратил на увеличение эмиссионных свойств лампы. В этих целях впервые было предложено покрывать нить накала тонким слоем окисла кальция или бария. Кроме того, в баллон вводились ртутные пары, которые создавали дополнительную ионизацию и увеличивали тем самым катодный ток.
Итак, электронная лампа сначала вошла в обиход в качестве детектора, потом — усилителя. Но ведущее место в радиотехнике она завоевала только после того, как была обнаружена возможность использовать ее для генерирования незатухающих электрических колебаний. Самый первый ламповый генератор создал в 1913 году замечательный немецкий радиотехник Мейсснер. На основе триода Либена он построил также первый в мире радиотелефонный передатчик и в июне 1913 года осуществил радиотелефонную связь между Науэном и Берлином на расстоянии 36 км.
Ламповый генератор содержал колебательный контур, состоящий из катушки индуктивности L и конденсатора C. Уже говорилось, что если такой конденсатор зарядить, то в контуре возникают затухающие колебания. Чтобы колебания не затухали, нужно компенсировать потери энергии за каждый период.
Следовательно, энергия от источника постоянного напряжения должна периодически поступать в контур. С этой целью в электрическую цепь колебательного контура включали ламповый триод, так что колебания с контура подавались на его сетку. В анодную цепь лампы включалась катушка Lc, индуктивно связанная с катушкой L колебательного контура. В момент включения схемы ток от батареи, постепенно нарастая, движется через триод и катушку Lc. При этом по закону электромагнитной индукции в катушке L будет находиться электрический ток, который заряжает конденсатор C. Напряжение с пластин конденсатора, как это видно из схемы, подается на катод и сетку. При включении положительно заряженная пластина конденсатора соединяется с сеткой, то есть заряжает ее положительно, что способствует росту тока, проходящего через катушку Lc. Это будет продолжаться до тех пор, пока анодный ток не достигнет максимума (ведь ток в лампе определяется количеством электронов, испаряемых с катода, а их число не может быть беспредельно — возрастая до какого-то максимума, этот ток уже больше не увеличивается при росте сеточного напряжения). Когда это произойдет, через катушку Lc потечет постоянный ток. Поскольку индуктивная связь осуществляется только при переменном токе, в катушке L тока не будет. В связи с этим конденсатор начнет разряжаться. Положительный заряд сетки, следовательно, будет уменьшаться, а это немедленно скажется на величине анодного тока — он тоже будет уменьшаться. Следовательно, и ток через катушку Lc будет убывающим, что создаст в катушке L ток противоположного направления. Поэтому, когда конденсатор C окажется разряженным, уменьшающийся ток через Lc будет по-прежнему индуктировать ток в катушке L, вследствие чего пластины конденсатора будут заряжаться, но в противоположном направлении, так что на пластине, связанной с сеткой, будет накапливаться отрицательный заряд. Это вызовет в конце концов полное прекращение анодного тока — протекание тока через катушку L вновь прекратится, и конденсатор начнет разряжаться. Вследствие этого отрицательный заряд на сетке будет все меньше и меньше, снова появится анодный ток, который будет возрастать. Так весь процесс повторится сначала. Из этого описания видно, что через сетку лампы будет протекать переменный ток, частота которого равна собственной частоте колебательного контура LC. Но эти колебания будут не затухающими, а постоянными, поскольку они поддерживаются путем постоянного добавления энергии батареи через катушку Lc, индуктивно связанную с катушкой L.
Изобретение лампового генератора позволило сделать важный шаг в технике радиосвязи — кроме передачи телеграфных сигналов, состоявших из коротких и более продолжительных импульсов, стала возможна надежная и высококачественная радиотелефонная связь — то есть передача с помощью электромагнитных волн человеческой речи и музыки. Может показаться, что радиотелефонная связь не имеет в себе ничего сложного. В самом дела, звуковые колебания с помощью микрофона легко преобразуются в электрические. Почему бы, усилив их и подав в антенну, не передавать на расстояние речь и музыку точно так же, как передавался до этого код Морзе? Однако в действительности такой способ передачи неосуществим, так как через антенну хорошо излучаются только мощные колебания высокой частоты. А медленные колебания звуковой частоты возбуждают в пространстве настолько слабые электромагнитные волны, что принять их нет никакой возможности. Поэтому до создания ламповых генераторов, вырабатывающих колебания высокой частоты, радиотелефонная связь представлялась чрезвычайно сложным делом. Для передачи звука эти колебания изменяют или, как говорят, модулируют с помощью колебаний низкой (звуковой) частоты. Суть модуляции заключается в том, что высокочастотные колебания генератора и низкочастотные от микрофона накладываются друг на друга и таким образом подаются в антенну.
Модуляция может происходить разными способами. Например, микрофон включается в цепь антенны. Так как сопротивление микрофона меняется под действием звуковых волн, ток в антенне будет в свою очередь меняться; иначе говоря, вместо колебаний с постоянной амплитудой, мы будем иметь колебания с изменяющейся амплитудой — модулированный ток высокой частоты.
Принятый приемником модулированный высокочастотный сигнал даже после усиления не способен вызвать колебания мембраны телефона или рупора громкоговорителя со звуковой частотой. Он может вызвать только высокочастотные колебания, не воспринимаемые нашим ухом. Поэтому в приемнике необходимо произвести обратный процесс — из высокочастотных модулированных колебаний выделить сигнал звуковой частоты — или, говоря другими словами, произвести детектирование сигнала.
Детектирование осуществлялось с помощью вакуумного диода. Диод, как уже говорилось, пропускал ток только в одном направлении, превращая переменный ток в пульсирующий. Этот пульсирующий ток сглаживался с помощью фильтра. Простейшим фильтром мог быть конденсатор, подключенный параллельно с телефонной трубкой. Работа фильтра происходила так. В тот момент времени, когда диод пропускал ток, часть его ответвлялась в конденсатор и заряжала его. В промежутках между импульсами, когда диод оказывался заперт, конденсатор разряжался на трубку. Поэтому в интервале между импульсами ток протекал через трубку в ту же сторону, что и сам импульс. Каждый следующий импульс подзаряжал конденсатор. Благодаря этому через трубку протекал ток звуковой частоты, форма которого почти полностью воспроизводила форму низкочастотного сигнала на передающей станции. После усиления электрические колебания низкой частоты превращались в звук; Простейший детекторный приемник состоит из колебательного контура, связанного с антенной, и присоединенной к контуру цепи, состоящей из детектора и телефона.
Первые электронные лампы были еще очень несовершенны. Но в 1915 году Лэнгмюр и Гедэ предложили эффективный способ откачки ламп до очень малых давлений, благодаря чему на смену ионным лампам пришли вакуумные. Это подняло электронную технику на значительно более высокий уровень. ТАНК
Технические предпосылки для создания танка появились еще в конце XIX столетия — к тому времени были изобретены гусеничный движитель, двигатель внутреннего сгорания, броня, скорострельные пушки и пулеметы. Первый гусеничный трактор на паровом ходу создал еще в 1888 году американец Бэтером. Накануне Первой мировой войны, как уже отмечалось, появился промышленный гусеничный трактор «Холт», который можно считать непосредственным предшественником танка.
Но одних предпосылок было мало — недоставало насущной потребности. Только начавшаяся в 1914 году Первая мировая война жестко определила эту необходимость. Когда противники бросили в наступление миллионные армии, они никак не предполагали, что пулеметы и пушки буквально сметут идущие в атаку полки и дивизии. Громадные потери заставили солдат в конце концов скрыться в окопах и блиндажах. На Западе фронт застыл и превратился в сплошную линию укреплений, протянувшуюся от Ла-Манша до границы со Швейцарией. Война зашла в так называемый позиционный тупик. Выход из него пытались найти при помощи артиллерии — тысячи орудий в течение нескольких дней, а то и недель перепахивали снарядами каждый метр неприятельских позиций. Казалось, там не осталось ничего живого. Но как только атакующая пехота выбиралась из окопов, уцелевшие пушки и пулеметы обороняющихся вновь наносили ей чудовищные потери. Вот тогда-то на поле боя и появились танки.
Мысль создать боевую гусеничную машину, способную передвигаться по пересеченной местности через окопы, рвы и проволочные заграждения, впервые высказал в 1914 году английский полковник Суинтон. После обсуждения в различных инстанциях военное министерство в целом приняло его идею и сформулировало основные требования, которым должна была отвечать боевая машина. Она должна была быть небольшой, иметь гусеничный ход, пуленепробиваемую броню, преодолевать воронки до 4 м и проволочные заграждения, развивать скорость не менее 4 км/ч, иметь пушку и два пулемета. Основным назначением танка было разрушение проволочных заграждений и подавление пулеметов противника. Вскоре фирма Фостера за сорок дней создала на базе гусеничного трактора «Холт» боевую машину, получившую название «Маленький Вилли». Его главными конструкторами были инженер Триттон и лейтенант Вильсон.
«Маленький Вилли» был испытан в 1915 году и показал неплохие ходовые качества. В ноябре фирма «Холт» приступила к изготовлению новой машины. Конструкторам предстояла трудная проблема не утяжеляя танка, увеличить его длину на 1 м, чтобы он мог преодолевать четырехметровые окопы. В конце концов это удалось достигнуть за счет того, что обводу гусеницы придали форму параллелограмма. Кроме того, оказалось, что танк с трудом берет вертикальные насыпи и крутые возвышения. Чтобы увеличить высоту зацепа, Вильсон и Триттон придумали пустить гусеницу поверх корпуса. Это значительно повысило проходимость машины, но одновременно породило ряд других затруднений, связанных, в частности, с размещением пушек и пулеметов. Вооружение пришлось распределить по бортам, а чтобы пулеметы могли стрелять по курсу в сторону и назад, их установили в боковых выступах — спонсонах. В феврале 1916 года новый танк, названный «Большой Вилли», с успехом прошел ходовые испытания. Он мог преодолевать широкие окопы, двигаться по вспаханному полю, перебираться через стенки и насыпи высотой до 1, 8 м. Окопы до 3, 6 м не представляли для него серьезного препятствия.
Корпус танка представлял собой коробку-каркас из уголков, к которым на болтах крепились бронированные листы. Броней была закрыта и ходовая часть, которая состояла из малых неподрессоренных опорных катков (тряска в машине была ужасной). Внутри «сухопутный крейсер» напоминал машинное отделение небольшого корабля, по которому можно было ходить, даже не пригибаясь. Для водителя и командира в передней части имелась отдельная рубка. Большую часть остального пространства занимали мотор «Даймлер», коробка передач и трансмиссия. Для пуска двигателя 3-4 человека команды должны были вращать огромную пусковую рукоять, пока мотор не заводился с оглушительным ревом. На машинах первых марок внутри размещались еще и топливные баки. С обеих сторон двигателя оставались узкие проходы. Боеприпасы находились на полках между верхней частью двигателя и крышей. На ходу в танке скапливались выхлопные газы и пары бензина. Вентиляция не предусматривалась. Между тем жар от работающего двигателя вскоре делался невыносимым — температура достигала 50 градусов. Кроме того, при каждом выстреле пушки танк наполнялся едкими пороховыми газами. Экипаж не мог подолгу оставаться на боевых местах, угорал и страдал от перегрева. Даже в бою танкисты иной раз выскакивали наружу, чтобы вдохнуть свежего воздуха, не обращая при этом внимания на свист пуль и осколков. Существенным недостатком «Большого Вилли» оказались узкие гусеницы, которые вязли в мягкой почве. При этом тяжелый танк садился на грунт, пни и камни. Плохо было с наблюдением и связью — смотровые щели в бортах не обеспечивали осмотра, зато брызги от пуль, попавших вблизи них в броню, поражали танкистов в лицо и глаза. Радиосвязи не было. Для дальней связи держали почтовых голубей, для ближней — специальные сигнальные флажки. Не было и внутреннего переговорного устройства.
Управление танком требовало значительных усилий водителей и командира (последний отвечал за тормоза гусениц правого и левого борта). Танк имел три коробки передач — одну основную и по одной на каждом борту (каждая из них управляла специальной трансмиссией). Поворот осуществлялся или торможением одной гусеницы, или переключением одной из бортовых коробок передач в нейтральное положение, в то время как на другом борту включали первую или вторую передачу. С остановленной гусеницей танк разворачивался почти на месте.
Впервые танки были применены в бою 15 сентября 1916 года у деревни Флер-Курслет в ходе грандиозного сражения на Сомме. Наступление англичан, начатое в июле, дало ничтожные результаты и весьма ощутимые потери. Тогда-то главнокомандующий генерал Хейг решил бросить в бой танки. Всего их было 49, но на исходные позиции вышло только 32, остальные из-за поломок остались в тылу. В атаке участвовали всего 18, но за несколько часов они продвинулись вместе с пехотой в глубь немецких позиций на 5 км на фронте такой же ширины. Хейг был доволен — по его мнению, именно новое оружие сократило потери пехоты в 20 раз против «нормы». Он немедленно направил требование в Лондон сразу на 1000 боевых машин.
В последующие годы англичане выпустили несколько модификаций Mk (таково было официальное название «Большого Вилли»). Каждая следующая модель была совершеннее предыдущей. Например, первый серийный танк Mk-1 имел вес 28 тонн, передвигался со скоростью 4, 5 км/ч, был вооружен двумя пушками и тремя пулеметами. Экипаж его составляли 8 человек. Более поздний танк MkA имел скорость 9, 6 км/ч, вес — 18 тонн, экипаж — 5 человек, вооружение — 6 пулеметов. MkC при весе 19, 5 тонн развивал скорость 13 км/ч. Экипаж на этом танке состоял из четырех человек, а вооружение — из четырех пулеметов. Последний, созданный уже в 1918 году, плавающий танк MkI имел вращающуюся башню, экипаж из четырех человек и вооружение из трех пулеметов. При весе в 13, 5 тонн он развивал на суше скорость 43 км/ч, а на воде — 5 км/ч. Всего англичане изготовили за годы войны 3000 танков 13 различных модификаций.
Постепенно танки были приняты на вооружение и другими воюющими армиями. Первые французские танки были разработаны и выпущены фирмой «Шнейдер» в октябре 1916 года. Внешне они мало походили на своих английских собратьев — гусеницы не охватывали корпус, а располагались по его бортам или под ним. Ходовая часть подрессоривалась специальными пружинами, что облегчало работу экипажа. Однако из-за того, что верхняя часть танка сильно нависала над гусеницами, проходимость «Шнейдеров» была хуже, и они не могли преодолевать даже незначительные вертикальные преграды.
Самым лучшим танком Первой мировой войны стал «Рено» FT, выпущенный фирмой «Рено» и имевший вес всего 6 т, экипаж из двух человек, вооружение — пулемет (с 1917 г пушка), максимальную скорость — 9, 6 км/ч.
«Рено» FT стал прообразом танка будущего. На нем впервые нашла свое разрешение компоновка основных узлов, которая до сих пор остается классической: двигатель, трансмиссия, ведущее колесо — сзади, отделение управления — впереди, вращающаяся башня — в центре. На танки «Рено» впервые стали устанавливать бортовые радиостанции, что сразу повысило управляемость танковыми соединениями. Ведущее колесо большого диаметра помогало преодолевать вертикальные препятствия и выбираться из воронок. Танк имел хорошую проходимость и был прост в управлении. В течение 15 лет он служил образцом для многих конструкторов. В самой Франции «Рено» состоял на вооружении до конца 30-х годов, а по лицензии его выпускали еще в 20-ти странах.
Немцы также попробовали освоить новое оружие. С 1917 года фирма «Бремерваген» начала производство танка A7V, однако их массовый выпуск немцы так и не смогли наладить. Их танки участвовали в некоторых операциях, но в количествах, не превышавших нескольких десятков машин.
Напротив, страны Антанты (то есть собственно Англия и Франция) имели к концу войны около 7 тысяч танков. Здесь бронированные машины получили признание и прочно утвердились в системе вооружения. Ллойд-Джордж, английский премьер в годы войны, говорил: «Танк был выдающимся и потрясающим новшеством в области механической помощи войне. Этот окончательный английский ответ на немецкие пулеметы и траншеи без сомнения сыграл очень важную роль в ускорении победы союзников». Танки широко применялись англичанами в боевых действиях. В ноябре 1917 года впервые была проведена массовая танковая атака. В ней участвовали 476 машин при поддержке шести пехотных дивизий. Это был огромный успех нового вида оружия. Стреляя из пушек и пулеметов, танки снесли проволочные заграждения и с ходу преодолели первую линию окопов. Всего за несколько часов англичане продвинулись в глубь фронта на 9 км, потеряв при этом всего 4 тысячи человек. (В предыдущее британское наступление под Ипром, продолжавшееся четыре месяца, англичане потеряли 400 тысяч человек и сумели вклиниться в немецкую оборону всего на 6-10 км). Французы тоже несколько раз массированно использовали танки. Так, в июле 1918 года более 500 французских танков участвовало в бою под Суассоном. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.009 сек.) |