|
|||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Источники электромагнитного поляОсновным источником электромагнитных волн являются антенна и высокочастотная ЭДС.
Заключение. Электромагнитное поле возникает в результате движения заряженных микрочастиц (электронов, протонов, ионов), а также благодаря наличию у микрочастиц собственного (спинового) магнитного момента. Уравнения Максвелла описывают огромную область явлений, и непосредственно электромагнитное поле. Они лежат в основе электротехники и радиотехники и играют важнейшую роль в развитии современной физики. Потенциалы электромагнитного поля, величины, характеризующие электромагнитное поле. В электростатике векторное электрическое поле можно характеризовать одной скалярной функцией — электростатическим потенциалом.
Волновое уравнение для электромагнитного поля. Уравнения Максвелла для векторов и можно переписать в виде системы для проекций этих векторов на оси декартовой системы координат (3.3.1) =0. В нейтральной однородной непроводящей среде, где плотность зарядов и плотность тока проводимости равны нулю, уравнения Максвелла запишутся (3.3.2) Из уравнений Максвелла следует важный вывод о существовании принципиально нового физического явления: электромагнитное поле способно существовать самостоятельно – без электрических зарядов и токов. При этом изменение его состояния обязательно имеет волновой характер. Это подтверждается тем, что, проведя ряд преобразований с уравнениями (3.3.2), можно получить уравнения , (3.3.3) . Как видно, это волновые уравнения. Они неразрывно связаны друг с другом, так как они получены из (3.3.2), которые связывают вектора и . Они описывают волну векторов и , распространяющуюся с фазовой скоростью . (3.3.4) В вакууме и скорость электромагнитной волны (скорость света в вакууме) . (3.3.5) Это одна из фундаментальных физических констант. Тогда скорость волны в среде , (3.3.6) где n – показатель преломления среды, который определяет во сколько раз скорость электромагнитной волны в среде меньше, чем в вакууме.
Свойства электромагнитных волн. Установим основные свойства электромагнитной волны на примере плоской волны, распространяющейся в свободном пространстве (отсутствуют заряды и токи). 1. Направим ось х перпендикулярно волновым поверхностям. При этом и , а значит и их проекции на оси y и z, не будут зависеть от координат y и z, т. е. соответствующие производные по y и z будут равны нулю. Поэтому уравнения (3.3.1) упрощаются (останутся только производные по x) и принимают вид: (3.3.7) Из условий и следует, что Ex не зависит ни от x, ни от t, аналогично - для Hx. Это значит, что отличные от нуля Ex и Hx могут быть обусловлены лишь постоянными однородными полями, накладывающимися на поле волны. А для переменного поля плоской волны Ex = 0 и Hx = 0, т.е. векторы и перпендикулярны направлению распространения волны – оси x. Значит, электромагнитная волна является поперечной. 2. Кроме того, оказывается, векторы и в электромагнитной волне взаимно ортогональны. Чтобы убедиться в этом, объединим средние уравнения (3.3.7), содержащие, например, Ey и Hz, в пару: (3.3.8) (можно было бы взять и другую пару, содержащую производные Ez и Hy). Из этих уравнений видно, что изменение во времени, скажем, магнитного поля, направленного вдоль оси z, порождает электрическое поле Ey вдоль оси y. Изменение во времени поля Ey в свою очередь порождает поле Hz и т. д. Ни поля Ez, ни поля Hy при этом не возникает. А это и значит, что ^ . 3. и являются решениями уравнений (3.3.9) т.е. представляют собой гармонические функции (3.3.10) Как видно из (3.3.9) частоты и волновые числа в этих выражениях одинаковы, отличаются лишь амплитуды и начальные фазы. Подставив эти решения в уравнения (3.3.8), получим (3.3.11) Чтобы эти уравнения удовлетворялись в любой момент времени в любой точке пространства, нужно, чтобы . Таким образом колебания векторов и в бегущей волне совпадают по фазе. Это значит, что Ey и Hz одинаковы в каждый момент по знаку, одновременно обращаются в нуль и одновременно достигают максимума, что представлено на рис 3.3.1, который называется мгновенным снимком волны. 4. Найдем связь мгновенных значений Ε и Н. Рисрис.3.3.1. Поскольку , соотношения (3.3.11) перепишутся . (3.3.12) Перемножив эти два равенства, получим . (3.3.13) Это соотношение связывает амплитуды колебаний Е и Н. Но поскольку фазы их колебаний совпадают, то мгновенные значения подчиняются такому же равенству (3.3.14) Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.) |