АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

КОМПОСТИРОВАНИЕ ТВЕРДЫХ ОРГАНИЧЕСКИХ ОТХОДОВ

Читайте также:
  1. IV. Современные методы синтеза неорганических материалов с заданной структурой
  2. В органических соединениях
  3. Важнейшие классы неорганических соединений. Бинарные и многоэлементные соединения. Оксиды: определение, классификация, номенклатура, способы получения, химические свойства
  4. Виды органических структур управления организациями
  5. Виды связи влаги в твердых материалах
  6. Вопрос№28 Механические свойства твердых тел. Кристаллы, аморфные вещества
  7. Гистологическое строение и химический состав твердых тканей зуба
  8. Гистологическое строение, химический сосите и функции твердых тканей зуба
  9. Глава 5. Мир неорганических существ
  10. ДЕФЕКТЫ В ТВЕРДЫХ ТЕЛАХ
  11. Диффузионные процессы в твердых телах
  12. Закон толерантности. Законом о неустранимости отходов и побочных воздействия.

 

Начало этих технологий было положено способами переработки избыточного активного ила, образующегося при аэробной очистке сточных вод на станциях биологической очистки. Методы метанового брожения с получением биогаза и удобрений, а также методы биокомпостиорования в аэробных условиях, используемых для переработки активного ила, были затем использованы для переработки навоза, окультуривания свалок и превращения их в установки по биопереработки отходов. Разрабатываются также методы биологической переработки полимерных материалов, таких как сельскохозяйственные пленки [8], биодеградации нефтесодержащих осадков [7], биорегенерации резины отработанных шин c с получением каучука-регенерата [17]. Перечень перерабатываемых с помощью биотехнологий отходов растет, так как почти для каждого вещества можно подобрать микроб, для которого это вещество является субстратом. Исследование химического состава твердых отходов показывает, что фракция, подвергающаяся биодеградации, увеличиваясь с течением времени, к настоящему моменту достигла приблизительно 70-80% [2] от общего количества твердых отходов.

Многие современные экологические проблемы возникают из-за локального накопления органических отходов, количество которых слишком велико для естественного потенциала биодеградации. По возможности эти отходы утилизируют, но основную массу пытаются удалить наиболее дешевым способом, поскольку эти отходы считаются низкоактивными. В Великобритании, например [11], их вывозят на свалку, сжигают и закапывают в землю. Помимо этого все чаще используется компостирование, которое с одной стороны, позволяет получить ценный продукт, а с другой – является процессом очистки, делающим низкоактивные отходы менее «неприятными» для окружающей среды.

Компостирование – это экзотермический процесс биологического окисления, в котором органический субстрат подвергается аэробной биодеградации смешанной популяцией микроорганизмов в условиях повышенной температуры и влажности [11]. В процессе биодеградации органический субстрат претерпевает физические и химические превращения с образованием стабильного гумифицированного конечного продукта, представляющего определенную ценность для сельского хозяйства и как органическое удобрение, и как средство, улучшающее структуру почвы. Очень важно, что гумифицированные продукты быстро приходят в равновесие с экосистемой, в которую их внесли, и не вызывают серьезных нарушений в ней, как это бывает при внесении не переработанных отходов.

Отходы, поддающиеся компостированию, варьируют от городского мусора, представляющего собой смесь органических и неорганических компонентов, до гомогенных субстратов, таких как навоз, отходы растеневодства, сырой активный ил и нечистоты. В процессе компостирования органические вещества переходят в более стабильную форму (компост), выделяются углекислый газ и вода, возрастает температура.

Состав компоста варьируется в широких пределах и в основном отражает состав использованного органического сырья. Ниже перечислены компоненты готового компоста и указаны пределы их содержания (в % по сухой массе) [11]:

 

Органические вещества 25,0 – 80,0

Углерод 8,0 – 50,0

Азот 0,4 – 3,5

Фосфор 0,1 – 1,6

Калий 0,4 – 1,6

Кальций (в виде СаО) 0,7 – 1,5

Компост, сырьем для которого послужили городские отходы, содержит меньше органических веществ и основных питательных веществ для растений, чем компост, полученный из сельскохозяйственных отходов. Компост из городских отходов содержит также существенные количества микроэлементов. Ряд полевых испытаний показал, что эти металлы накапливаются в растениях, выросших на почве, удобренной таким компостом. Уровень тяжелых металлов в компосте следует контролировать, чтобы предупредить накопление токсичных веществ в почве.

Разложение органических отходов в процессе компостирования представляет собой динамический и сложный экологический процесс, в котором постоянно происходит изменение температуры и состава питательных веществ. В течении процесса заметно меняется численность и видовой состав микроорганизмов. Скорость получения конечного продукта зависит от нескольких взаимосвязанных параметров. К ним относятся источники питания, дисперсность частиц, влажность, прочность структуры, аэрация, перемешивание, и размер кучи (если используются компостные ряды).

Особое значение имеет кислород, потребность в котором может быть определена, если известны химический состав органического субстрата и степень его биодеградации в процессе компостирования. Например, окисление белкового материала может быть представлено следующим уравнением [11]:

С16Н24О5N4 + 16,5O2 ¾® 16CO2 + 6H20 + 4NH3 + Q. (2.1)

Исходя из уравнения (2.1), 1,5 г кислорода необходимо для окисления 1 г окисляемого материала. Эта теоретическая потребность в кислороде будет колебаться от 1 г кислорода на грамм органического вещества высокоокисленных отходов, таких как целлюлоза, и до 4 г кислорода на г субстрата для насыщенных углеводородов. На практике компостируемая масса представляет собой смесь различных субстратов с разной теоретической потребностью в кислороде и разной способностью к биодеградации, так что, как правило, может быть окислено только 40 % органического вещества.

Оптимальные значения важнейших параметров процесса компостирования приведены ниже:

 

Отношение C/N в субстрате От 25/1 до 30/1

Размер частиц 12,5 мм для систем с перемешиваним и принудительной аэрацией,

50 мм для компостных рядов при естественной аэрации.

Влажность 50 – 60 %

Свободный объем Около 30 %

Аэрация 0,6 – 1,8 м3 воздуха на 1 кг летучей чисти твердых веществ или

поддержания концентрации О2 в пределах 10 – 18 %

Температура 55оС

Перемешивание Без перемешивания, при периодическом в простых системах. Ко-

роткие периоды энергичного перемешивания в механ. системах.

Размеры куч Любая длина, высота 1,5 м, ширина 2,5 м при естественной

Аэрации.

 

Для компостирования отходов полеводства, овощеводства и садоводства до сих пор применяются достаточно простые схемы – кучи и компостные ряды. Напротив, для переработки городских отбросов за последние 50 лет было предложено более 30 различных схем, способных перерабатывать более 500 т твердых отходов в день. Оборудование для подготовки сырья и обработки готового компоста одинаково для большинства из этих установок. Но стадия биодеградации имеет различное аппаратурное оформление и может проводиться в колодцах, отсеках, силосах, сбраживателях и барабанах.

Можно отметить следующие преимущества процесса компостирования:

1. Внесение компоста улучшает структуру почвы, и в определенной степени удобряет ее, так как при разрущшении компоста выделяется азот, фосфор, калий, микролэлементы.

2. При внесении компоста не нарушается равновесие экосистем.

3. Смешение при компостировании низкоактивных отходов типа соломы с отходами жизнедеятельности животных и человека позволяет решать проблему гигеенического удаления последних.

4. При компостировании погибают патогенные микроорганизмы, сорняки и их семена.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.008 сек.)