АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Типы секреции

Читайте также:
  1. D. Прекращение секреции мелатонина
  2. Важнейшие железы внутренней секреции
  3. Железы внешней и внутренней секреции
  4. Железы внутренней секреции
  5. Железы внутренней секреции
  6. Железы внутренней секреции
  7. Железы внутренней секреции. Гормоны, их физиологическая роль. Гормоны гипофиза.
  8. Иерархия (соподчиненность) и взаимодействие желез внутренней секреции
  9. Лекция №8 Железы внутренней секреции. Гормоны.
  10. Регуляция синтеза и секреции
  11. Регуляция синтеза и секреции
  12. Регуляция синтеза и секреции

Типы секреции (мерокриновый, или эккриновый, апокриновый и голокриновый)

Трансцитоз - транспорт макромолекул через клетку, в ходе которого происходит быстрое и эффективное переключение эндоцитоза на экзоцитоз. Трансцитоз обычно осуществляется с участием кавеол. Кавеолы формируют дискретные пузырьки-переносчики, курсирующие между апикальной и базальной частями клетки, подвергаясь в каждом обороте (круге транспорта) процессу отрыва-слияния. Эндосома — мембранная внутриклеточная органелла, один из типов везикул, образующаяся при слиянии и созреванииэндоцитозных пузырьков.

Большинство эндосом, образующихся в результате эндоцитоза из плазматической мембраны, транспортируются внутрь клетки, где сливаются с существующими эндосомами либо закисляются за счёт активности протонной АТФазы (H-АТФаза). Различают три типа эндосом: ранние, или первичные, эндосомы, поздние эндосомы (или мультивезикулярные тельца) и рециркулирующие эндосомы. [1] Они различаются по времени, требуемом для достижения эндоцитированного материала этих эндосом, и по функциональным маркёрам, таким как различные формы белков из группы Rab.[2] Кроме этого, они различаются по своей морфологии. После того, как эндоцитарные везикулы теряют оболочку, они сливаются с ранними эндосомами, которые в свою очередь в процессе созревания превращаются в поздние липосомы перед тем, как слиться с лизосомами.[3][4]

Преобразование ранних эндосом, или процесс созревания, может происходить несколькими путями. Важную роль в этом процессе играют вакуолярные H-ATФазы, которые переносят протоны внутрь эндосомы и закисляют её.[5] Рециркулирующие молекулы (как правило рецепторы) собираются в трубчатых структурах эндосом. После рециркуляции и потери трубчатых структур образующиеся поздние эндосомы содержат только вакуолеобразные структуры. Они постепенно увеличиваются в размере по мере гомотипического слияния.[6]Молекулы также сортируются в мелкие везикулы, которые выпячиваются по периметру мембраны внутрь эндосомы, формируя люминальные везикулы. Это приводит к образованию мульти везикулярной организации поздних эндосом (мультивезикулярных телец). Одоновременно продолжается рециркуляция некоторых молекул, включая трансфериновый рецептор и маннозо-6-фосфатный рецептор. [3] Эндосомы теряют RAB5 и получают RAB7 и становятся компетентмыми для последующего слияния с лизосомами.[6]

Слияние поздних эндосом с лизосомами приводит первоначально к образованию гибридной структуры с промежуточными характеристиками.[7] Так, например, лизосомы обладают большей плотностью, чем эндосомы, в то время как такие гибридные структуры имеют промежуточную плотность.

Различают три типа эндосом: ранние, или первичные, эндосомы, поздние эндосомы (или мультивезикулярные тельца) и рециркулирующие эндосомы. [1] Они различаются по времени, требуемом для достижения эндоцитированного материала этих эндосом, и по функциональным маркёрам, таким как различные формы белков из группы Rab.[2] Кроме этого, они различаются по своей морфологии. После того, как эндоцитарные везикулы теряют оболочку, они сливаются с ранними эндосомами, которые в свою очередь в процессе созревания превращаются в поздние липосомы перед тем, как слиться с лизосомами.[3][4]

Преобразование ранних эндосом, или процесс созревания, может происходить несколькими путями. Важную роль в этом процессе играют вакуолярные H-ATФазы, которые переносят протоны внутрь эндосомы и закисляют её.[5] Рециркулирующие молекулы (как правило рецепторы) собираются в трубчатых структурах эндосом. После рециркуляции и потери трубчатых структур образующиеся поздние эндосомы содержат только вакуолеобразные структуры. Они постепенно увеличиваются в размере по мере гомотипического слияния.[6]Молекулы также сортируются в мелкие везикулы, которые выпячиваются по периметру мембраны внутрь эндосомы, формируя люминальные везикулы. Это приводит к образованию мульти везикулярной организации поздних эндосом (мультивезикулярных телец). Одоновременно продолжается рециркуляция некоторых молекул, включая трансфериновый рецептор и маннозо-6-фосфатный рецептор. [3] Эндосомы теряют RAB5 и получают RAB7 и становятся компетентмыми для последующего слияния с лизосомами.[6]

Слияние поздних эндосом с лизосомами приводит первоначально к образованию гибридной структуры с промежуточными характеристиками.[7] Так, например, лизосомы обладают большей плотностью, чем эндосомы, в то время как такие гибридные структуры имеют промежуточную плотность.

13 ЦИТОСКЕЛЕТ…………

К элементам цитоскелета относят микротрубочки, микрофиламенты и промежуточные филаменты. Цитоскелет придаёт клетке определённую форму и выполняет множество других функций (например, обеспечивает подвижность клетки и внутриклеточный транспорт).

Микротрубочка. 13 параллельно расположенных протофиламентов состоят из отдельных субъединиц - димеров α- и β-тубулина. 13 параллельно расположенных тубулиновых протофиламентов формируют полый цилиндр диаметром 25 нм. Протофиламенты образуются путём полимеризации гетеродимерного белка тубулина, состоящего из глобулярных субъединиц - α- и β-тубулина. [114]

из гетеродимерного белка тубулина, состоящего из двух глобулярных субъединиц - α- и β-тубулина. Сборка микротрубочек осуществляется в т.н. центре организации микротрубочек в центросоме. Микротрубочки - динамичные структуры, постоянно подвергающиеся полимеризации и деполимеризации.

Полимеризация и деполимеризация микротрубочек. Удлинение (рост) микротрубочек происходит за счёт полимеризации молекул тубулина. В каждой микротрубочке различают (+)-конец и (-)-конец. Микротрубочки постоянно подвергаются полимеризации и деполимеризации с (+)-конца, тогда как с противоположного (-)-конца (если он не занят стабилизирующим белком) тубулиновые гетеродимеры отделяются от микротрубочек. Как только прекращается добавление новых димеров к растущему концу, в этом месте сразу начинается разборка полимера. Повторяющиеся раунды полимеризации и деполимеризации характеризуют динамическую нестабильность микротрубочек. Цитозольные белки, способные связываться с концами микротрубочек и стабилизировать их, относят к семейству ассоциированных с микротрубочками белков.

 

Функции микротрубочек. Микротрубочки участвуют в поддержании формы клетки, антероградном и ретроградном аксоном транспорте макромолекул, органелл и секреторных везикул, фагоцитозе и функции лизосом. Микротрубочки образуют аксонемы и базальные тельца, обеспечивая подвижность жгутиков и ресничек, в составе центриолей они обеспечивают расхождения хромосом при делении клеток.

Молекулярные моторы. Применительно к микротрубочкам под этим термином понимают АТФазы (динеины и кинезины), одним доменом связывающиеся с тубулином микротрубочек, а другим - с различными мембранными органеллами (митохондриями, секреторными везикулами из комплекса Гольджи, элементами эндоплазматической сети, эндоцитозными пузырьками, аутофагосомами) или макромолекулами. За счёт расщепления АТФ моторные белки перемещаются вдоль микротрубочек и таким образом транспортируют ассоциированные с ними органеллы и макромолекулы. При этом кинезиновый мотор направлен к (+)-концу, а динеиновый - к (-)-концу микротрубочки (см. рис. 2-28).

♦ Тубулин-кинезиновый хемомеханический преобразователь обеспечивает внутриклеточный транспорт органелл и перемещение хромосом вдоль микротрубочек в ходе клеточного деления. Перемещение органелл вдоль микротрубочек с участием кинезинов осуществляется в направлении (+)-конца микротрубочек.

♦ Тубулин-динеиновый хемомеханический преобразователь отвечает за направленный транспорт макромолекул и органелл к (-)-концу микротрубочек. В составе аксонемы тубулиновый молекулярный мотор приводит в движение жгутик сперматозоида и реснички мерцательных клеток.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)