|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Горной породыКрепость горных пород - характеристика сопротивляемости пород их добыванию - технологическому разрушению. Это понятие крепости введено профессором М.М. Протодьяконовым (старшим), который для количественной оценки предложил коэффициент крепости f, в первом приближении пропорциональный пределу прочности породы при сжатии. Им была разработана шкала классификации горных пород по крепости, в соответствии с которойгорные породы подразделены на 10 категорий [5,6]. К первой категории относятся породы, имеющие наивысшую степень крепости (f =20), к десятой - наиболее слабые плывучие породы (f = 0,3). Пределы изменения коэффициента крепости от 0,3 до 20. Коэффициент крепости можно определить также, экспериментально, методом толчения, разработанным проф. М.М. Протодьяконовым (младшим). Сущность метода толчения заключается в следующем. Отбирается 5 образцов породы произвольной формы массой приблизительно по 40-60 г. Каждый образец дробят в стакане трубчатого копра гирей массой 2,4 кг, сбрасываемой с высоты 0.6 м. После 5–15 – кратного сбрасывания гири, полученную мелочь просеивают через сито с отверстиями 0,5 мм. Фракцию размером менее 0,5 мм собирают с пяти образцов и насыпают в стакан объемомера диаметром 23 мм. Определяют высоту столбика пыли (мм) в объёмомере. Коэффициент крепости, который называют динамическим, вычисляют по формуле: (9.1) где n -число сбрасываний гири при испытании одного образца. Имеющиеся в настоящее время, методики определения коэффициентов крепости скальных пород достаточно апробированы и находят широкое применение в практике ведения горных работ [5]. Из существующих методов определения крепости пород f наиболее распространенным является метод испытания образцов пород на временное сопротивление их одноосному сжатию (МПа) с последующим вычислением его по известной формуле М.М. Протодьяконова [6]
= 503,2/100=5,032 (9.2) Впоследствии формула (9.2) была уточнена Л.И. Бароном и представлена выражением: (9.3) где σ и σ1 – временное сопротивление образцов одноосному сжатию, соответственно, правильной и неправильной формы, МПа. Общим недостатком формул (9.2) и (9.3) способов является то, что затруднительно получить достоверные показатели коэффициента крепости многолетнемерзлых крупнообломочных пород (МКП). Так, по результатам наших исследований временное сопротивление на сжатие (МКП), представленных супесчаным суглинком с галькой и щебнем с включениями кварцевых булыжников при температуре -50 равно 6 МПа [7]. Тогда по формуле (9.2) ,
а по формуле (9.3) при σ =6, σ1 =3,7 .
Вместе с тем по шкале буримости горных пород предложенной Министерством Геологии СССР данные породы отнесены к V1-X категории с коэффициентом крепости 4-5 [8]. Результаты определения коэффициентов крепости пород по формулам (9.2) и (9.3) не отражают реальное физико-механическое состояние многолетнемерзлых крупнообломочных пород и дают заниженные данные о прочностных свойствах таких пород. Таким образом, определение коэффициентов крепости f по вышеприведенным формулам может привести к необоснованным техническим решениям по выбору техники и технологии разработки месторождений полезных ископаемых. Авторами предлагается способ определения коэффициента крепости f осуществлять следующим образом [9]: от массива пород, сложенных многолетнемерзлыми крупнообломочными породами, берутся пробы методом бороздового опробования. Вес одной пробы должен быть не менее 3 кг. Материал собирается на брезент, тщательно перемешивается и затем осуществляется отбор проб на определение гранулометрического состава методом квартования. Породу взвешивают, высушивают и просеивают по фракциям. Твердые включения более 2 мм отделяют от заполнителя, группируют по фракциям, определяют их процентное содержание относительно объема твердых включений в пробе, с учетом которого определяют коэффициенты крепости пород, составляющих образец. Сущность предлагаемого метода заключается в суммировании коэффициентов крепости заполнителя и твердых включений, составляющих образец из выражения:
или , (9.4)
где - коэффициент крепости заполнителя;
- коэффициент крепости пород отдельных составляющих испытываемого образца; - временное сопротивление на одноосное сжатие соответственно заполнителя, 1-й и n –й фракции крупнообломочных пород составляющих испытываемый образец; n1…nn –содержание 1-й и n –й фракции крупнообломочных пород относительно общего объема. Рассмотрим пример определения коэффициента крепости (МКП) представленных твердыми включениями (50%) и заполнителем (50%), характерных для россыпных месторождений Якутии. В таблице 6 приведены результаты определения гранулометрического состава пробы, принятые и расчетные значения коэффициента крепости. Таблица 6
Результаты определения значений крепости пород
Значение коэффициента крепости кварцевых булыжников равно f =20, но в данном примере с учетом его содержания в долях единицы относительно объема твердых включений составляющего всего 0,1, принимается значение f =2. Таким же образом определяется значение коэффициента крепости для песчанистых сланцев, которое с учетом содержания пород в долях единицы с коэффициентом крепости f =6, (0,4) принято f =2,4. Коэффициент крепости заполнителя (песок, супесь, суглинок) определяется прямым испытанием на сжатие или при наличии данных ранее проведенных исследований используются их значения в зависимости от отрицательной температуры и влажности пород с применением формулы (9.2). В нашем примере f = 0,6. При этом, значение коэффициента крепости заполнителя определяется без учета его процентного содержания, так как по нашим и по исследованиям В.Н. Тайбашева (ВНИИ-1) для пород, крупнообломочная фракция в которых составляет менее 70% общего веса скелета породы, прочностные и деформационные свойства определяются только составом заполнителя [7,10].
где fзап – коэффициент крепости заполнителя, f 1 – коэффициент крепости кварцевых булыжников, f 2 – коэффициент крепости гальки и щебня песчанистых сланцев, n 1 –содержание в долях единицы кварцевых булыжников относительно твердых включений, n 2 –содержание в долях единицы гальки и щебня песчанистых сланцев относительно твердых включений. Итак, значение коэффициента крепости для МКП, представленных супесчаным суглинком с галькой и щебнем с включениями кварцевых булыжников равно 5. Предлагаемый способ определения общего коэффициента крепости f позволяет получить достоверное значение крепости для данных пород. Еще одним немаловажным преимуществом такой оценки общего коэффициента крепости f является то, что его значение можно определить косвенным путем, зная состав отдельных фракций и их процентное содержание с помощью справочных материалов по прочностным свойствам с соответствующим коэффициентом крепости f, а затем суммируя их получить общий коэффициент крепости для многолетнемерзлых крупнообломочных пород. Достоверность определения коэффициентов крепости МКП, предлагаемым способом, можно подтвердить на следующем примере. В единых нормах выработки (времени) Министерства геологии СССР на горнопроходческие работы 1969 г. принята единая классификация горных пород с разделением на 20 категорий, в которой многолетнемерзлые крупнообломочные породы отнесены к VI категории с коэффициентом 4-5 [4]. Определение показателя трудности разрушения основывается на том, что в разрушении горной породы в равной степени принимают участие сжимающие, растягивающие и скалывающие усилия [1]. В реальных условиях разрушение пород (бурение, взрывание, дробление) всегда сопровождается их перемещением, на что также затрачивается работа. В связи с этим при оценке трудности разрушения пород в технологических процессах необходим учет их объемного веса. В итоге показатель относительной трудности разрушения пород Птр может быть выражен следующим образом:
вместо этой формулы использовал эту(в прошлом году так решили лабораторную работу): Птр = 0,005´ктр´(sсж + sр + tсдв) + 0,5´g Птр = 0,005*0,68*(503,2+50+75)+0,5*2,3=3,28 где ктр = 1,2´lср + 0,2 – коэффициент трещиноватости горного массива; ктр = 1,2*0,4+0,2=0,68 tсдв = 1,5sр=1,5*50=75
Все породы по относительной трудности разрушения разделены на пять классов и 25 категорий. I класс – полускальные, плотные, мягкие, сыпучие (Птр=1¸5), категории: 1, 2, 3, 4, 5; II класс – скальные легко разрушаемые (Птр=5,1¸10), категории: 6, 7, 8, 9, 10; III класс – скальные средней трудности разрушения, (Птр=10,1¸15) категории: 11, 12, 13, 14, 15; IV класс – скальные трудноразрушаемые (Птр=15,1¸20), категории: 16, 17, 18, 19, 20; V класс – скальные весьма трудноразрушаемые (Птр=20,1¸25), категории: 21, 22, 23, 24, 25 Редко встречающиеся породы с Птр>25 относятся к внекатегорийным.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.) |