|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
УРАВНЕНИЯ НЕРСТАТЕРМОДИНАМИКА ГАЛЬВАНИЧЕСКОГО ЭЛЕМЕНТА. В ходе химической реакции при работе гальванического элемента на каждом электроде растворяется или выделяется n молей вещества. В соответствии с законом Фарадея во внешней цепи протекает nF кулонов электричества. (F — постоянная Фарадея, Кл/моль). Для равновесного обратимого и самопроизвольного процесса, протекающего в гальваническом элементе при постоянных температуре и давлении, уменьшение энергии Гиббса равно максимальной полезной работе. Эта максимально полезная работа эквивалентна электрической энергии, равной nFE, получаемой при работе гальванического элемента.
n — число электронов, пронимающих участие в процессе, F — постоянная Фарадея (96 500 Кл), E — ЭДС элемента. Тогда
Из формулы (1)получим выражение для ЭДС гальванического элемента:
Представим окислительно-восстановительную реакцию, протекающую в гальваническом элементе, в общем виде: где В,D,R и Q — атомы или ионы, входящие в состав растворов электролитов, электродов и участвующие в окислительно-восстановительной реакции (для медно-цинкового гальванического элемента это ионы Cu2+ и Zn2+); b,d,r и q — стехиометрические коэффициенты. Если обозначать активность реагирующих веществ через активности аВ, аД, аR,аQ, то по уравнению изотермы химической реакции можно написать: где Ка — константа равновесияокислительно-восстановительной реакции гальванического элемента, выраженная через активность; Подставив выражение для энергии Гиббса
Уравнения (4) и (5) представляет собой промежуточные варианты уравнения Нернста для выражения ЭДС гальванического элемента. Проведем дальнейшее преобразования уравнения (5). Первый член этого уравнения (RT/nF)lnKa при данной температуре есть величина постоянная. Если начальная активность веществ, участующих в химической реакции при работе гальванического элемента, равна единице, т.е. В этих условиях ЭДС гальванического элемента принята за стандартную и обозначается через Е0
Стандартная ЭДС определяется как разность стандартных электродных потенциалов гальванического элемента С учетом равенства (6) уравнение Нернста можно представить следующим образом:
где Е0 — стандартная ЭДС элемента; R — универсальная газовая постоянная; Т — абсолютная температура; n — число электронов (валентность ионов) в соответствии со стехиометрическим уравнением реакций; F — постоянная Фарадея. Величины R и F — постоянные, а при данной температуре и RT/F тоже будет постоянной. Перейдем от натуральных логарифмов к десятичным и освободимся от отрицательного знака перед вторым членом уравнения (7) (напомним, что для этого необходимо воспользоваться обратным логарифмом — короче говоря, поменять местами числитель со знаменателем). После преобразования вместо уравнения (2) ЭДС гальванического элемента при 298К будет равна
Уравнения (7) и (8) можно считать окончательным вариантом записи уравнения Нернста. Отношение активностей электролитов гальванического элемента, входящее во второй член правой части уравнения (8), имеет вид, подобный уравнению для константы химического равновесия Ка. Однако константа равновесия определяется активностями применительно к равновесным условиям, а отношение активностей в правой части уравнения отражает неравновесные условия, т.е, реально существующие в гальваническом элементе концентрации ионов, выраженные через активности. Пример. В зависимости Даниэля—Якоби протекают следующие процессы: Суммарная электродная реакция: ЭДС данного элемента равна: где Так как при Т=298К активности цинка и меди равны единице а=1, то
в общем случае Пример. Вычислить ЭДС элемента Даниэля—Якоби, если активность ионов цинка
Электродные потенциалы можно также рассчитать по уравнению Нернста.
F — число Фарадея (96 500 Кл); T — абсолютная температура; n — число электронов, участвующих а процессе.
Напомню, стандартная ЭДС гальванического элемента определяется разностью стандартных потенциалов: Стандартную ЭДС можно выразить следующим образом: Отсюда, зная стандартную ЭДС, можно определить константу равновесия электрохимической реакции:
Пример. Рассмотрим электродный процесс: Определим потенциал этого электрода по уравнению Нернста:
Следует напомнить, что а — это активность ионов в растворе. Она определяется по формуле:
С — молярная концентрация При Численные значения коэффициента активности приводится в таблицах. Чем активность отличается от концентрации: Из — за ионного облака возможность перехода иона из раствора затрудняется. Причем, чем больше концентрация соли, тем сильнее ион связан в раствором. Таким образом, коэффициент активности Активность можно рассматривать как исправленную концентрацию. Зная конценрацию ионов электролита, по уравнению Нернста можно рассчитать теоретическое значения электродного потенциала. Но электродный потенциал легко измерить и экспериментально (
Но чем больше концентрация электролита, тем больше расхождения
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.01 сек.) |