|
|||||||||||||||||||||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Основные характеристики спектральных каналов (для Landsat-7)
2 канал (зеленый): • чувствителен к различиям в мутности воды, осадочным шлейфам и факелам выбросов; • охватывает пик отражательной способности поверхностей листьев, может быть полезен для различения обширных классов растительности; • также полезен для выявления подводной растительности. 3 канал (красный): • чувствителен в зоне сильного поглощения хлорофилла, т.е. хорошо распознает почвы и растительность; • чувствителен в зоне высокой отражательной способности для большинства почв; • полезен для оконтуривания снежного покрова. 4 канал (ближний инфракрасный): • различает растительное многообразие; • может быть использован для оконтуривания водных объектов и разделения сухих и влажных почв, т.к. вода сильно поглощает ближние инфракрасные волны. 5 канал (средний или коротковолновый инфракрасный): • чувствителен к изменению содержания воды в тканях листьев (набухаемости); • чувствителен к варьированию влаги в растительности и почвах (отражательная способность уменьшается при возрастании содержания воды); • полезен для определения энергии растений и отделения суккулентов от древесной растительности; • особенно чувствителен к наличию/отсутствию трехвалентного железа в горных породах (отражательная способность возрастает при увеличении количества трехвалентного железа); • отличает лед и снег (светлый тон) от облаков (темный тон). 6 канал (длинноволновый инфракрасный или тепловой): • датчики предназначены для измерения температуры излучающей поверхности от -100 до+150С; • подходит для дневного и ночного использования; • применение тепловой съемки: анализ влажности почв, типов горных пород, выявление теплового загрязнения воды, бытового скопления тепла, источников городского производства тепла, инвентаризация живой природы, выявление геотермальных зон. 7 канал (средний, или коротковолновый инфракрасный): • совпадает с полосой поглощения излучения гидроминералами (глинистые сланцы, некоторые оксиды и сульфаты), благодаря чему они выглядят темными; • полезен для литологической съемки; • как и 5-й канал, чувствителен к варьированию влаги в растительности и почвах. 8 канал (панхроматический - 4,3,2): • наиболее типичная комбинация каналов, используемая в дистанционном зондировании для анализа растительности, зерновых культур, землепользования и водно-болотных угодий. Многозональная съемка ведется многие годы, и исследователи накопили большой объем эмпирических данных. Уже хорошо известно, какие соотношения яркости в различных зонах спектра соответствуют растительности, обнаженной почве, водным поверхностям, урбанизированным территориям и другим распространенным типам ландшафта, существуют библиотеки спектров различных природных образований. Выразив эти соотношения в виде линейных комбинаций различных зон, можно получать так называемые индексы. Так как многие современные системы дистанционного зондирования Земли осуществляют съемку в видимой красной и ближней инфракрасной частях спектра, то распространенным методом является вычисление нормализованного вегетационного индекса (NDVI). Нормализованный вегетационный индекс показывает наличие и состояние растительности по соотношению отраженных энергий в 2 спектральных каналах. Эта зависимость основана на различных спектральных свойствах хлорофилла в видимом и ближнем ИК диапазонах. Вегетационные индексы можно рассматривать как промежуточный этап при переходе от эмпирических показателей к реальным физическим свойствам растительного покрова. При классификации растительного покрова по цифровым изображениям часто используют индекс площади листьев – LAI (Leaf Area Index). Есть формулы перехода от NDVI к LAI. Индекс LAI можно измерить в натурных условиях. В настоящее время в Интернет ежемесячно публикуются растровые изображения LAI (пространственное разрешение 250 м) на весь мир. Эти данные в сочетании с методами классификации мультиспектральных изображений могут значительно повысить достоверность при обработке изображений в экспертных системах, учитывающих множество различной информации Анализ изображений, основанный, только на спектральных свойствах объектов ограничивает возможности получения информации о структуре насаждений. В основе текстурного анализа изображений лежит поиск закономерностей пространственной вариабельности пикселя и его окружения. Проведение текстурного анализа цифровых космоснимков позволяет автоматически разделять насаждения на выдела, по различиям в их структуре, так как изменение текстурных показателей связано с изменениями в распределении растительного покрова. Текстурные показатели являются дополнительным информационным ресурсом при обработке цифровых снимков из космоса в лесохозяйственных целях. Мультиспектральная классификация изображений основывается на поиске пикселей аналогичных эталону по его спектральным характеристикам. Это позволяет создавать лесные тематические электронные карты. Процедура классификации изображений заключается в поиске аналогичных пикселей изображения и группировке их в классы или категории, основанные на значениях яркостей. Классификация изображений разделяется на автономную и классификацию с обучением. Точность мультиспектральной классификации лимитируется геометрическим разрешением данных дистанционного зондирования. При этом основной проблемой является проблема смешанных пикселей. Эта проблема имеет большое значение и часто возникает на границе между 2 различными классами. Например, такая ситуация возможна на границе леса и сельскохозяйственных земель. Если использовать космоснимки с разрешением 15 м, то точно провести эту границу не возможно. Подобные проблемы разделения смешанных пикселей можно решить при использовании технологии субпиксельной классификации мультиспектральных изображений. Технология субпиксельной классификации была опробована при классификации изображений, получаемых с радиометра ASTER модулем ERDAS Imagine Subpixel Classifier. Разрешение снимков ASTER 15 м, поэтому возможно получение тематических планово-картографических материалов масштаба 1:25000, что соответствует требованиям при проведении лесоустройства по III разряду. Субпиксельная классификация основана на моделировании спектральных характеристик объектов, которые в очень небольшом количестве можно обнаружить на снимке. Небольшое количество этого материала может быть смешано в различных пропорциях с другими материалами на мультиспектральных изображениях. Процедура субпиксельной классификации требует предварительного задания максимально возможных растительных и нерастительных классов, которые могут быть обнаружены на снимке. При этом исходными данными могут послужить как материалы полевых наблюдений, так и спектры материалов, полученные при спектрометрировании. Эти значения используются для реконструкции значений пикселей по линейным и нелинейным моделям. При этом обязательным требованием является, чтобы анализируемое изображение состояло как минимум из 3 изображений сделанных в разных зонах электромагнитного спектра. В результате классификации, возможно, разделить пиксели, содержащие как минимум 20% материалов интереса. Классификатор так же моделирует варианты различной доли содержания вещества в пикселе. Применяя различные технологии мультиспектральной и субпиксельной классификации изображений возможно получение данных с более высоким пространственным разрешением, чем исходные изображения. Большие потенциальные возможности имеет сочетание аэроснимков на небольшую территорию с космоснимками на большую территорию. При этом площадь, покрываемая, аэросъемкой может использоваться как база для автоматической генерации эталонов. Результатом анализа данных дистанционного зондирования являются растровые тематические карты. Информация о насаждениях, содержащаяся в геоинформационных системах в виде повыдельных электронных карт, совмещаемых с таксационными базами данных, может быть использована для создания новой информации и обновления, электронных повыдельных карт на основе сравнения результатов обработки изображений с данными лесоустройства. Технология ведения непрерывного лесоустройства может быть основана на использовании экспертных систем анализа изображений, формирующих в автоматическом режиме предложения для внесения изменений в электронные лесоустроительные материалы, последующем осуществлении проверки обнаруженных изменений и их внесение в повыдельные электронные карты. При этом в результате обновления планово-картографических материалов, возможно автоматическое изменение таксационной базы данных. Точность результатов анализа изображений может быть повышена путем интеграции различных типов данных о территории (рельеф, уклон, аспект, тип почв, информация прошлого лесоустройства, климатические показатели) и использование различных технологий классификации изображений. Обработка изображений человеком в лесохозяйственных целях это мощный инструмент, особенно в сочетании с автоматизированными технологиями их анализа. Автоматическая интерпретация изображений более оперативна и более объективна, чем интерпретация изображений человеком, это позволяет при дешифрировании находить утерянные детали различной информации. Обнаружение изменений на основе автоматического сравнения электронных материалов лесоустройства и результатов анализа, данных дистанционного зондирования - это новый подход в управлении лесным хозяйством. Таким образом, комплексное использование данных дистанционного зондирования и новых технологий их обработки с привлечением натурных исследований позволит более рационально использовать природные ресурсы и значительно сократить затраты на обновление информации о лесном фонде, потребности в которой возрастают.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |