АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Химические процессы в технологии

Читайте также:
  1. V. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ.
  2. VI. Педагогические технологии на основе эффективности управления и организации учебного процесса
  3. VII. Педагогические технологии на основе дидактического усовершенствования и реконструирования материала
  4. XI. Гетерогенные процессы.
  5. XII. Педагогические технологии авторских школ
  6. Анализ деятельности организации в технологии антикризисного управления
  7. Анализ практического применения технологии «лечение алкоголизма без желания пациента»
  8. Анализ технологии законодательного процесса в Тюменской области.
  9. Аппаратное обеспечение информационной технологии.
  10. Аппаратурное оформление процессов биотехнологии
  11. Архиерейские процессы. Дело Воронежского архиепископа Льва (Юрлова)
  12. Бестраншейные технологии строительства подводных переходов магистральных трубопроводов

Химические процессы лежат в основе химической технологии, которая представляет собой науку о наиболее экономичных методах и средствах массовой химической переработки природного и сельскохозяйственного сырья в продукты потребления и продукты, применяемые в других отраслях материального производства.

Все, что связано с расходованием материальных ресурсов в народном хозяйстве, на три четверти зависит от использования химических знаний и применения химической технологии, «химических навыков». Более гого, современная химическая технология, используя достижения других естественных наук — прикладной механики, материаловедения и кибернетики, изучает и разрабатывает совокупность физических и химических процессов, машин и аппаратов, оптимальные пути осуществления данных процессов и управления ими во многих отраслях промышленно1 о производства различных веществ, продуктов, материалов и изделий. Химическая технология является научной основой нефтехимической, коксохимической, целлю-лозно-бумаяшой, пищевой, микробиологической промышленности, промышленности строительных материалов, черной и цветной металлургии и других отраслей.

В последние десятилетия химико-технологические процессы используются практически во всех отраслях промышленного производства.

Химико-технологический процесс (XTII) можно разделить на три взаимосвязанные стадии:

• подвод реагирующих веществ в зону реакции;

• собственно химические реакции;

• отвод полученных продуктов из зоны реакции.

Подвод реагирующих веществ может осуществляться абсорбцией, адсорбцией или десорбцией газов, конденсацией паров, плавлением твердых компонентов или растворением их в жидкости, испарением жидкостей или возгонкой твердых веществ (см. подпара1рафы 4.2.3, 4.2.4).


Химические реакции как второй этап ХТП обычно протекают в несколько последовательных или параллельных стадий, приводящих к получению основного продукта, а также ряда побочных продуктов (отходов), образующихся при взаимодействии примесей с основными исходными веществами. При анализе же производственных процессов часто учитывают не все реакции, а лишь те из них, которые имеют определяющее влияние на качество и количество получаемых целевых продуктов.

Отвод полученных продуктов из зоны реакции может совершаться аналогично подводу, в том числе посредством диффузии, конвекции и перехода вещества из одной фазы (газовой, твердой, жидкой) в другую. При этом общая скорость технологического процесса определяется скоростью одного из трех составляющих элементарных процессов, протекающего медленнее других.

Различают следующие разновидности химико-технологических процессов:

• гомогенные и гетерогенные (могут быть экзотермическими и эндотермическими, обратимыми и необратимыми);

• электрохимические;

• каталитические.

Гомогенными процессами называют такие, в которых все реагирующие вещества находятся в одной какой-нибудь фазе: газовой (г), твердой (т), жидкой (ж). В этих процессах реакция обычно протекает быстрее, чем в гетерогенных. В целом механизм всего технологического процесса в гомогенных системах проще, как и управление процессом. По этой причине на практике часто стремятся к проведению именно гомогенных процессов, т.е. переводят реагирующие компоненты в какую-либо одну фазу.

В гетерогенных процессах участвуют вещества, находящиеся в разных состояниях (фазах), т.е. в двух или трех фазах. Примерами двухфазовых систем могут быть: г — (несмешивающиеся); г — т;ж — т;т — т (разновидные). В производственной практике чаще всего встречаются системы г — ж, г — т, ж — т. Нередко процессы протекают в сложных гетерогенных системах (г — ж — т, г — т — т, ж — т — т).

К гетерогенным процессам относятся горение (окисление) твердых веществ и жидкостей, растворение металлов в кислотах и щелочах и др.

Все химические процессы протекают либо с выделением, либо с поглощением теплоты: первые называются экзотермическими, вторые — эндотермическими. Количество выделяе-


мой или поглощаемой при этом теплоты называют тепловым эффектом процесса (теплоты процесса).

Теоретически все химические реакции, осуществляемые в ХТП, обратимы. В зависимости от условий они могут протекать как в прямом, так и в обратном направлениях. Во многих случаях равновесие в реакциях полностью смещается в сторону продуктов реакции, а обратная реакция, как правило, не протекает. По этой причине технологические процессы делятся на обратимые и необратимые. Последние протекают лишь в одном направлении.

Электрохимические процессы относятся к такой науке, как электрохимия, которая рассматривает и изучает процессы превращения химической энергии в электрическую и наоборот. Поскольку электрический ток — это перемещение электрических зарядов, в частности электронов, то основное внимание электрохимия сосредотачивает на реакциях, в которых электроны переходят от одного вещества к другому. Такие реакции в химии называются окислительно-восстановительными.

Примерами осуществления перехода химической энергии в электрическую могут служить гальванические элементы, предназначенные для однократного электрического разряда: непрерывного или прерывистого. После разряда они теряют работоспособность. Разновидностью гальванических элементов являются аккумуляторные батареи, например, свинцовый аккумулятор. В отличие от гальванических элементов, работоспособность аккумулятора после разряда можно восстановить путем пропускания через него постоянного тока от внешнего источника.

Процессы перехода электрической энергии в химическую называются электролизом. Согласно ионной теории электролиза, прохождение постоянного электрического тока через электролит осуществляется с помощью ионов. На электродах, подводящих электроток, происходит перенос электронов к ионам либо от них. При этом в электрическом поле положительно заряженные ионы (катионы) движутся к катоду, отрицательно заряженные (анионы) — к аноду. На катоде происходит восстановление, на аноде — окисление ионов или молекул, входящих в состав электрона.

Электролиз нашел широкое применение в следующих основных промышленных процессах: извлечение металлов (алюминия, цинка, частично меди); очистка (рафинирование) металлов (меди, цинка и др.); нанесение гальванических покрытий; анодирование (оксидирование) поверхностей.

Нанесение гальванических покрытий (электроосаждение) осуществляется на катоде. Катод в этом случае погружается в


электролит, содержащий ионы электроосаждаемого металла. В качестве же анода используется электрод из того металла, которым наносят покрытие.

Метод электроосаждения включает гальваностегию — нанесение покрытия толщиной 5—50 мм и гальванопластику — получение сравнительно толстых, но легко отделяющихся слоев.

Гальваностегию используют для защиты изделий от коррозии, повышения их износостойкости, придания им способности отражать свет, электропроводности, термостойкости, антифрик-ционности и других свойств, а также для декоративной отделки.

Гальванопластика позволяет получать копии, воспросизво-дящие мельчайшие подробности рисунка или рельефа поверхности.

Анодирование, или анодное оксидирование — это образование на поверхности металла слоя его оксида при электролизе. Этому процессу обычно подвергают сплавы на основе легких металлов. Образующиеся слои оксидов могут быть тонкими, или барьерными (менее 1 мкм), и толстыми — фазовыми, или эмалеподобными (десятки и сотни мкм). Структуры и химический состав оксидов зависят от природы металла, электролита и условий процесса. При этом на одном и том же металле можно получать фазовые оксиды с разной структурой, а следовательно, и с различными свойствами (твердостью, окраской, электрической проводимостью и т.д.). Тонкие слои используют в основном в радиоэлектронике. Фазовые слои защищают металл от коррозии, обеспечивают износостойкость изделий, образуют прозрачные или цветные декоративные покрытия.

Каталитические процессы, называемые катализом, осуществляются с целью изменения скорости химических реакций.

Различают положительный и отрицательный катализ, в зависимости от того, ускоряет катализатор реакцию или замедляет ее. Как правило, термин «катализ* определяется как ускорение реакции, в то время как вещества, ее замедляющие, называются ингибиторами.

Важными компонентами промышленных катализаторов являются промоторы — вещества, добавление которых к катализатору в малых количествах (обычно долях процента) увеличивает его активность, селективность или устойчивость.

Вещества, действие которых на катализатор приводит к снижению его активности или полному прекращению каталитического действия, называются каталитическими ядами.

В качестве катализаторов в промышленности чаще всего применяют платину, железо, никель, кобальт и их оксиды, оксид ванадия (V), алюмосиликаты, некоторые минеральные кис-


лоты и соли; катализаторы используются как в окислительно-восстановительных, так и кислотно-основных реакциях.

Каталитические процессы, вызванные переносом электронов, относятся к окислительно-восстановительному катализу. Он применяется в производстве аммиака, азотной кислоты, серной кислоты и др.

К кислотно-основному катализу относятся каталитический крекинг, гидратация, дегидрация, многие реакции изомеризации, конденсации органических веществ.

В промышленности встречается и так называемый полифункциональный катализ, в котором имеет место совмещение рассмотренных выше двух важнейших видов катализа.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)