|
|||||||
|
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Доказательство. То, что есть решение уравнения (2.3), следует из теоремы о свойствах решений лоду 2-го порядка
То, что
Постоянные
а такой определитель, как мы видели в предыдущем параграфе, отличен от нуля. Теорема доказана. Пример. Доказать, что функция Решение. Легко убедиться подстановкой, что функции
§5. ЛОДУ 2-го порядка с постоянными коэффициентами. Дано лоду 2-го порядка с постоянными коэффициентами Подставляя эту функцию в уравнение (5.1), после сокращения на
Функция 1. 2.
Частные решения
3.
Обе скобки в левой части этого равенства тождественно равны нулю. Действительно,
§6. Структура общего решения линейного неоднородного дифференциального уравнения (лнду) 2-го порядка. Теорема 1. Общее решение лнду 2-го порядка
представляется в виде суммы общего решения
и любого частного решения Поиск по сайту: |
||||||
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.226 сек.) |