АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

ДАННЫЕ И ЗНАНИЯ

Читайте также:
  1. Dan: 'данные о друзьях
  2. II. Проблема источника и метода познания.
  3. III.4.1. Научные революции в истории естествознания
  4. IV. Диалектико-материалистическая концепция сознания
  5. VII.1. Субъект и объект познания
  6. Активность сознания
  7. Аналитические данные к счету «Продажа продукции (работ, услуг)»
  8. Анатомо-физиологические данные.
  9. Базовые знания, умения, навыки необходимые для изучения темы
  10. Без духовного знания традиция вырождается
  11. Билет № 3 Структура философского знания. Основные проблемы философии.
  12. Билет № 35 Проблема познания в философии. Основные направления в теории познания.

 

При изучении интеллектуальных систем традиционно возникает вопрос – что же такое знания и чем они отличаются от обычных данных, десятилетиями обрабатываемых ЭВМ. Можно предложить несколько рабочих определений, в рамках которых это становится очевидным.

Данные – это отдельные факты, характеризующие объекты, процессы и явления в предметной области, а также их свойства.

 

При обработке на ЭВМ данные трансформируются, условно проходя следующие этапы:

данные как результат измерений и наблюдений;

данные на материальных носителях информации (таблицы, протоколы, справочники);

модели (структуры) данных в виде диаграмм, графиков, функций;

данные в компьютере на языке описания данных;

базы данных на машинных носителях.

Знания связаны с данными, основываются на них, но представляют результат мыслительной деятельности человека, обобщают его опыт, полученный в ходе выполнения какой-либо практической деятельности. Они получаются эмпирическим путем.

Знания – это выявленные закономерности предметной области (принципы, связи, законы), позволяющие решать задачи в этой области.

 

При обработке на ЭВМ знания трансформируются аналогично данным:

знания в памяти человека как результат мышления;

материальные носители знаний (учебники, методические пособия);

поле знаний - условное описание основных объектов предметной области, их атрибутов и закономерностей, их связывающих;

знания, описанные на языках представления знаний (продукционные языки, семантические сети, фреймы – см. далее);

базы знаний.

Часто используются такие определения знаний:

знания – это хорошо структурированные данные, или данные о данных, или метаданные.

Существует множество способов определять понятия. Один из широко применяемых способов основан на идее интенсионала. Интенсионал понятия – это определение через понятие более высокого уровня абстракции с указанием специфических свойств. Этот способ определяет знания. Другой способ определяет понятие через перечисление понятий более низкого уровня иерархии или фактов, относящихся к определяемому. Это есть определение через данные, или экстенсионал понятия.

Пример 16.1. Понятие "персональный компьютер". Его интенсионал: "Персональный компьютер – это дружественная ЭВМ, которую можно поставить на стол и купить менее чем за $2000 - 3000".

Экстенсионал этого понятия: "Персональный компьютер – это Mac, IBM PC, Sinkler...".

 

Для хранения данных используются базы данных (для них характерны большой объем и относительно небольшая удельная стоимость информации), для хранения знаний – базы знаний (небольшого объема, но исключительно дорогие информационные массивы). База знаний – основа любой интеллектуальной системы.

Знания могут быть классифицированы по следующим категориям:

поверхностные – знания о видимых взаимосвязях между отдельными событиями и фактами в предметной области;

глубинные - абстракции, аналогии, схемы, отображающие структуру и процессы в предметной области.

Современные экспертные системы работают в основном с поверхностными знаниями. Это связано с тем, что на данный момент нет адекватных моделей, позволяющих работать с глубинными знаниями.

Кроме того, знания можно разделить на процедурные и декларативные. Исторически первичными были процедурные знания, т.е. знания, "растворенные" в алгоритмах. Они управляли данными. Для их изменения требовалось изменять программы. Однако с развитием искусственного интеллекта приоритет данных постепенно изменялся, и все большая часть знаний сосредоточивалась в структурах данных (таблицы, списки, абстрактные типы данных), т.е. увеличивалась роль декларативных знаний.

Сегодня знания приобрели чисто декларативную форму, т.е. знаниями считаются предложения, записанные на языках представления знаний, приближенных к естественному и понятных неспециалистам.

Существуют десятки моделей (или языков) представления знаний для различных предметных областей. Большинство из них может быть сведено к следующим классам:

продукционные;

семантические сети;

фреймы;

формальные логические модели.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 | 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | 78 | 79 | 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 | 88 | 89 | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 103 | 104 | 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 | 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 | 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 | 129 | 130 | 131 | 132 | 133 | 134 | 135 | 136 | 137 | 138 | 139 | 140 | 141 | 142 | 143 | 144 | 145 | 146 | 147 | 148 | 149 | 150 | 151 | 152 | 153 | 154 | 155 | 156 | 157 | 158 | 159 | 160 | 161 | 162 | 163 | 164 | 165 | 166 | 167 | 168 | 169 | 170 | 171 | 172 | 173 | 174 | 175 | 176 | 177 | 178 | 179 | 180 | 181 | 182 | 183 | 184 | 185 | 186 | 187 | 188 | 189 | 190 | 191 | 192 | 193 | 194 | 195 | 196 | 197 | 198 | 199 | 200 | 201 | 202 | 203 | 204 | 205 | 206 | 207 | 208 | 209 | 210 | 211 | 212 | 213 | 214 | 215 | 216 | 217 | 218 | 219 | 220 | 221 | 222 | 223 | 224 | 225 | 226 | 227 | 228 | 229 | 230 | 231 | 232 | 233 | 234 | 235 | 236 | 237 | 238 | 239 | 240 | 241 | 242 | 243 | 244 | 245 | 246 | 247 | 248 | 249 | 250 | 251 | 252 | 253 | 254 | 255 | 256 | 257 | 258 | 259 | 260 | 261 | 262 | 263 | 264 | 265 | 266 | 267 | 268 | 269 | 270 | 271 | 272 | 273 | 274 | 275 | 276 | 277 | 278 | 279 | 280 | 281 | 282 | 283 | 284 | 285 | 286 | 287 | 288 | 289 | 290 | 291 | 292 | 293 | 294 | 295 | 296 | 297 | 298 | 299 | 300 | 301 | 302 | 303 | 304 | 305 | 306 | 307 | 308 | 309 | 310 | 311 | 312 | 313 | 314 | 315 | 316 | 317 | 318 | 319 | 320 | 321 | 322 | 323 | 324 | 325 | 326 | 327 | 328 | 329 | 330 | 331 | 332 | 333 | 334 | 335 | 336 | 337 | 338 | 339 | 340 | 341 | 342 | 343 | 344 | 345 | 346 | 347 | 348 | 349 | 350 | 351 | 352 | 353 | 354 | 355 | 356 | 357 | 358 | 359 | 360 | 361 | 362 | 363 | 364 | 365 | 366 | 367 | 368 | 369 | 370 | 371 | 372 | 373 | 374 | 375 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)