|
|||||||||||||||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Формат OSPF-пакетовOSPF-пакет инкапсулируется непосредственно в поле данных IP-пакета. Значение поля «протокол верхнего уровня» в заголовке IP-дейтаграммы для OSPF равно 89. Заголовок пакета
Для начала надо сказать, что для того, чтобы между маршрутизаторами завязалась дружба (отношения смежности) должны выполниться следующие условия: 1) В OSPF должны быть настроены одинаковые Hello Interval на тех маршрутизаторах, что подключены друг к другу. По умолчанию это 10 секунд в Broadcast сетях, типа Ethernet. Это своего рода KeepAlive сообщения. То есть каждые 10 секунд каждый маршрутизатор отправляет Hello пакет своему соседу, чтобы сказать: “Хей, я жив”, 2) Одинаковыми должны быть и Dead Interval на них. Обычно это 4 интервала Hello — 40 секунд. Если в течение этого времени от соседа не получено Hello, то он считается недоступным и начинается 3) Интерфейсы, подключенные друг к другу, должны быть в одной подсети, 4) OSPF позволяет снизить нагрузку на CPU маршрутизаторов, разделив Автономную Систему на зоны. Так вот номера зон тоже должны совпадать, 5) У каждого маршрутизатора, участвующего в процессе OSPF есть свой уникальный индентификатор — Router ID. Если вы о нём не позаботитесь, то маршрутизатор выберет его автоматически на основе информации о подключенных интерфейсах (выбирается высший адрес из интерфейсов, активных на момент запуска процесса OSPF). Но опять же у хорошего инженера всё под контролем, поэтому обычно создаётся Loopback интерфейс, которому присваивается адрес с маской /32 и именно он назначается Router ID. Это бывает удобно при обслуживании и траблшутинге. 6) Должен совпадать размер MTU (maximum transmission unit означает максимальный размер полезного блока данных одного пакета) 1. Штиль. Состояние OSPF — DOWN В это короткое мгновение в сети ничего не происходит — все молчат. 2. Поднимается ветер: маршрутизатор рассылает Hello-пакеты на мультикастный адрес 224.0.0.5 со всех интерфейсов, где запущен OSPF. TTL таких сообщений равен одному, поэтому их получат только маршрутизаторы, находящиеся в том же сегменте сети. R1 переходит в состояние INIT. В пакеты вкладывается следующая информация:
Нас интересуют пока первые четыре или точнее вообще только Router ID и Neighbors. Сообщение Hello от маршрутизатора R1 несёт в себе его Router ID и не содержит Neighbors, потому что у него их пока нет. После получения этого мультикастного сообщения маршрутизатор R2 добавляет R1 в свою таблицу соседей (если совпали все необходимые параметры). И отправляет на R1 уже юникастом новое сообщение Hello, где содержится Router ID этого маршрутизатора, а в списке Neigbors перечислены все его соседи. В числе прочих соседей в этом списке есть Router ID R1, то есть R2 уже считает его соседом. 3) Дружба. Когда R1 получает это сообщение Hello от R2, он пролистывает список соседей и находит в нём свой собственный Router ID, он добавляет R2 в свой список соседей. Теперь R1 и R2 друг у друга во взаимных соседях — это означает, что между ними установлены отношения смежности. Далее происходит выбор DR и BDR, но мы не будем на этом останавливаться, хоть это и довольно важные вещи. 4) Затишье перед бурей. Далее все переходят в состояние EXSTART. Здесь все соседи решают между собой, кто босс. Им становится маршрутизатор с наибольшим Router ID — R2. 5) Когда выбран Батька, соседи переходят в состояние Exchange и обмениваются DBD-сообщениями (или DD) — Data Base Description, которые содержат описание LSDB (Link State Data Base), мол, я знаю про вот такие подсети. Тут надо пояснить, что такое LSDB. Если перевести на русский дословно: база данных о состоянии линков. В изначальном состоянии маршрутизатор знает только о тех линках (интерфейсах), на которых запущен процесс OSPF. По ходу пьесы, каждый маршрутизатор собирает всю информацию о сети и составляет топологию. Именно она и будет являться LSDB, которая должна быть одинакова на всех членах зоны. 6) Получив сообщение, маршрутизаторы R1 и R2 отправляют подтверждение о приёме DBD (LSAck), а затем сравнивают новую информацию с той, что содержится у них в LSDB и, если есть отличия, посылают LSR (Link State Request) друг другу, тем самым переходя в новое состояние LOADING. В LSR они говорят — “Я про вот эту сеть ничего не знаю. Расскажи мне подробнее”. 7) R2, получив LSR от R1, высылает LSU (Link State Update), которые содержат в себе LSA (Link State Advertisement) c детальной информацией о нужных подсетях. И вот, как только R1 получит последнюю порцию данных о всех подсетях и сформирует свою LSDB, он переходит в своё конечное состояние FULL STATE. К тому моменту, как все маршрутизаторы зоны придут к состоянию Full State на всех на них должна быть полностью одинаковая LSDB — они же одну и ту же сеть изучали. То есть фактически это означает, что маршрутизатор знает всю вашу сеть, что, как и куда подключено. 8) Итак, сейчас у нас все маршрутизаторы знают всё о сети, но это знание не помогает в маршрутизации. Теперь каждые 10 секунд каждый маршрутизатор будет отправлять Hello-пакеты, а каждые 30 минут рассылаются LSA — это типа данные уже считаются устаревшими, надо бы обновить, даже если изменений не было. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |