АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Это правило вытекает из 3-го уравнения Максвелла, в частном случае стационарного магнитного поля

Читайте также:
  1. V.1. Общие начала правового положения лиц в частном праве
  2. Алгебраические уравнения
  3. Але монетарне правило не враховує мінливості швидкості обігу грошей та чутливості попиту до зміни процентної ставки.
  4. Анализ индивидуальных случаев
  5. Анализ случаев нарушения безопасности движения с установлением виновных и конкретных нарушений правил и порядка работы
  6. В данном случае припадки всегда начинаются с клонических судорог левой кисти; следовательно, патологический очаг находится в средней трети правой передней центральной извилины.
  7. В какие инстанции следует обращаться в случае нарушения прав и свобод, гарантированных Европейским Союзом?
  8. В какой срок в общем случае должен быть составлен акт выездной налоговой проверки?
  9. В какой срок в общем случае должен быть составлен акт камеральной налоговой проверки?
  10. В каком порядке в общем случае обжалуются ненормативные правовые акты налоговых органов?
  11. В каком порядке в общем случае обжалуются ненормативные правовые акты налоговых органов?
  12. В каком случае в соответствии НРБУ-97 при радиационном загрязнении местности мерой защиты населения является ограничение пребывания на открытой местности?

Иными словами, при полном обходе контура потенциал, изменяясь, возвращается к исходному значению. Частным случаем второго правила для цепи, состоящей из одного контура, является закон Ома для этой цепи. При составлении уравнения напряжений для контура нужно выбрать положительное направление обхода контура. При этом падение напряжения на ветви считают положительным, если направление обхода данной ветви совпадает с ранее выбранным направлением тока ветви, и отрицательным — в противном случае (см. далее).

Правила Кирхгофа справедливы для линейных и нелинейных линеаризованных цепей при любом характере изменения во времени токов и напряжений.

 

 

практически все металлы при очень низких температурах (не более десятка Кельвин (0 град. Сельсия = 273,15 град. Кельвина)) становятся сверхпроводниками (теряют полностью электрическое сопротивление и начинают вытеснять магнитное поле).
Удельное сопротивление, а следовательно, и сопротивление металлов, зависит от температуры, увеличиваясь с ее ростом. Температурная зависимость сопротивления проводника объясняется тем, что
1 - возрастает интенсивность рассеивания (число столкновений) носителей зарядов при повышении температуры;
2 - изменяется их концентрация при нагревании проводника.
Опыт показывает, что при не слишком высоких и не слишком низких температурах зависимости удельного сопротивления и сопротивления проводника от температуры выражаются формулами:
ρt=ρ0*(1+α* t),
Rt=R0*(1+α* t),
где ρ0, ρt — удельные сопротивления вещества проводника соответственно при 0 °С и t °C; R0, Rt — сопротивления проводника при 0 °С и t °С, α — температурный коэффициент сопротивления: измеряемый в СИ в Кельвинах в минус первой степени (К-1). Для металлических проводников эти формулы применимы начиная с температуры 140 К и выше.
Температурный коэффициент сопротивления вещества характеризует зависимость изменения сопротивления при нагревании от рода вещества. Он численно равен относительному изменению сопротивления (удельного сопротивления) проводника при нагревании на 1 К.
hαi=1*∆ρ/ρ*∆T,
где hαi — среднее значение температурного коэффициента сопротивления в интервале ΔΤ.
Для всех металлических проводников α > 0 и слабо изменяется с изменением температуры. У чистых металлов α = 1/273 К-1. У металлов концентрация свободных носителей зарядов (электронов) n = const и увеличение ρ происходит благодаря росту интенсивности рассеивания свободных электронов на ионах кристаллической решетки.
Зависимость сопротивления металлов от температуры используют в термометрах сопротивления. Обычно в качестве термометрического тела такого термометра берут платиновую проволоку, зависимость сопротивления которой от температуры достаточно изучена.
Об изменениях температуры судят по изменению сопротивления проволоки, которое можно измерить. Такие термометры позволяют измерять очень низкие и очень высокие температуры, когда обычные жидкостные термометры непригодны.

 

12 Электрический ток. В веществе, помещенном в электрическое поле, под действием сил поля возникает процесс движения элементарных носителей электричества — электронов или ионов. Движение этих электрически заряженных частиц материи называют электрическим током.
За единицу силы тока принят ампер (А). Это такой ток, при котором через поперечное сечение проводника каждую секунду проходит количество электричества, равное 1 Кл. Силу тока иногда измеряют тысячными долями ампера — миллиамперами (мА) или миллионными долями ампера — микроамперами (мкА), а при больших значениях— тысячами ампер — килоамперами (кА), в формулах ток обозначают буквой I (i).
В электротехнике широко применяют как постоянный, так и переменный ток. Постоянным называют ток, значение и направление которого в любой момент времени остаются неизменными (рис. 9, а).
Токи, значение и направление которых не остаются постоянными, называют изменяющимися, или переменными. Чаще всего в электротехнических устройствах используют ток, изменяющийся по синусоидальному закону, который получают от генераторов переменного тока и трансформаторов (рис. 9, б). От выпрямителей получают пульсирующий ток (рис. 9, в), неизменный по направлению, но меняющийся по величине.

Электри́ческий ток — направленное (упорядоченное) движение заряженных частиц[1][2][3]. Такими частицами могут являться: в металлах — электроны. в электролитах — ионы (катионы и анионы), в газах — ионы и электроны, в вакууме при определенных условиях — электроны, в полупроводниках — электроны и дырки (электронно-дырочная проводимость). Иногда электрическим током называют также ток смещения, возникающий в результате изменения во времени электрического поля[4].

Электрический ток имеет следующие проявления:

  • нагревание проводников (в сверхпроводниках не происходит выделения теплоты);
  • изменение химического состава проводников (наблюдается преимущественно в электролитах);
  • создание магнитного поля (проявляется у всех без исключения проводников)
  • 13.Стационарное магнитное поле
  • подобно тому, как в пространстве, окружающем электрические заряды, возникает электростатическое поле, так и в пространстве, окружающем токи и постоянные магниты, возникает силовое поле, называемое магнитным. Наличие магнитного поля обнаруживается по силовому действию на внесенные в него проводники с током или постоянные магниты.Важнейшая особенность магнитного поля состоит в том, что оно действует только на движущиеся в этом поле электрические заряды

(109.1)

где p m — вектор магнитного момента рамки с током (Ввектор магнитной индукции, количественная характеристика магнитного поля). Для плоского контура с током I

(109.2)

где S — площадь поверхности контура (рамки), n — единичный вектор нормали к по­верхности рамки. Направление р m совпадает, таким образом, с направлением по­ложительной нормали.

Если в данную точку магнитного поля помещать рамки с различными магнитными моментами, то на них действуют различные вращающие моменты, однако отношение М max m (М max — максимальный вращающий момент) для всех контуров одно и то же и поэтому может служить характеристикой магнитного поля, называемой магнитной индукцией:

Магнитная индукция в данной точке однородного магнитного поля определяется максимальным вращающим моментом, действующим на рамку с магнитным момен­том, равным единице, когда нормаль к рамке перпендикулярна направлению поля. Следует отметить, что вектор В может быть выведен также из закона Ампера (см. § 111) и из выражения для силы Лоренца (см. § 114).

  • Так как магнитное поле является силовым, то его, по аналогии с электрическим, изображают с помощью линий магнитной индукции — линий, касательные к которым в каждой точке совпадают с направлением вектора В. Их направление задается правилом правого винта: головка винта, ввинчиваемого по направлению тока, враща­ется в направлении линий магнитной индукции

14. Электромагнитная индукция — явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него. Электромагнитная индукция была открыта Майклом Фарадеем 29 августа 1831 года[1]. Он обнаружил, что электродвижущая сила, возникающая в замкнутом проводящем контуре, пропорциональна скорости изменения магнитного потока через поверхность, ограниченную этим контуром. Величина электродвижущей силы (ЭДС) не зависит от того, что является причиной изменения потока — изменение самого магнитного поля или движение контура (или его части) в магнитном поле. Электрический ток, вызванный этой ЭДС, называется индукционным током.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)