|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Уравнение БернуллиВыделим в стационарно текущей идеальной жидкости (физическая абстракция, т. е. воображаемая жидкость, в которой отсутствуют силы внутреннего трения) трубку тока, ограниченную сечениями S 1 и S 2, по которой слева направо течет жидкость (рис. 47). Пусть в месте сечения S 1 скорость течения v 1, давление p 1 и высота, на которой это сечение расположено, h 1. Аналогично, в месте сечения S 2 скорость течения v 2, давление p 2 и высота сечения h 2. За малый промежуток времени D t жидкость перемещается от сечения S 1 к сечению , от S 2 к . Согласно закону сохранения энергии, изменение полной энергии E 2 —E 1 идеальной несжимаемой жидкости должно быть равно работе А внешних сил по перемещению массы m жидкости: E 2 – E 1 = А, где E 1 и E 2 — полные энергии жидкости массой m в местах сечений S 1 и S 2 соответственно. С другой стороны, А — это работа, совершаемая при перемещении всей жидкости, заключенной между сечениями S 1 и S 2, за рассматриваемый малый промежуток времени D t. Для перенесения массы m от S 1 до жидкость должна переместиться на расстояние l 1= v 1D t и от S 2 до — на расстояние l 2= v 2D t. Отметим, что l 1 и l 2 настолько малы, что всем точкам объемов, закрашенных на рис. 47, приписывают постоянные значения скорости v, давления р и высоты h.
Выражение выведено швейцарским физиком Д. Бернулли (1700—1782; опубликовано в 1738 г.) и называется уравнением Бернулли. Как видно из его вывода, уравнение Бернулли — выражение закона сохранения энергии применительно к установившемуся течению идеальной жидкости. Оно хорошо выполняется и для реальных жидкостей, внутреннее трение которых не очень велико. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |