|
|||||||
|
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Статистические методы анализа систем управленияРегрессионный анализ Регрессионный анализ ставит своей задачей исследование зависимости одной случайной величины от ряда других случайных и неслучайных величин (регрессия — зависимость математического ожидания случайной величины от значений других случайных величин). Например, после проведения N экспериментов на статистической модели получен набор реализаций случайных величин
Данное выражение представляет собой функцию, однако, если значения Точность и надежность получаемых оценок зависят от числа наблюдений (реализаций, экспериментов) и расположения прогностических значений Корреляционный анализ Корреляционный анализ используется для определения степени линейной взаимосвязи между случайными величинами (корреляция — зависимость между случайными величинами, выражающая тенденцию одной величины возрастать или убывать при возрастании или убывании другой). Основными задачами корреляционного анализа являются оценка корреляционных характеристик и проверка статистических гипотез о степени (значимости) связи между случайными величинами. Корреляционной характеристикой является коэффициент корреляции, равный математическому ожиданию произведений отклонений случайных величин Оценки коэффициентов корреляции рассчитываются по значениям оценок математических ожиданий и среднеквадратических отклонений, полученных путем статистической обработки результатов реализаций случайных величин. Дисперсионный анализ Дисперсионный анализ используется для проверки статистических гипотез о влиянии качественных факторов на показатели, т.е. факторов, не поддающихся количественному измерению (например, качественный фактор — организация производства, влияющий на количественный показатель — прибыль от производства). В этом заключается его отличие от регрессионного анализа, в котором факторы имеют количественную меру (например, количественный фактор — затраты на производство). Ковариационный анализ Ковариационный анализ используется для создания и изучения вероятностных моделей процессов, в которых присутствуют одновременно как количественные, так и качественные факторы, т.е. он объединяет регрессионные и дисперсионные методы. Модель включает в себя регрессионные и дисперсионные факторы, первые служат для проверки гипотез о значимости количественных факторов, а вторые качественных. Метод временных рядов Анализ временных рядов используется при исследовании дискретного случайного процесса, протекающего на интервале времени Т. Результаты экспериментов или наблюдений, полученные на данном интервале, представляются в виде временного ряда, каждое значение Y которого включает детерминированную f(t) и случайную z(t) составляющие: Y= f(t)+ z(t). Детерминированная составляющая описывает влияние детерминированных факторов в момент времени t, влияние же множества случайных факторов описывает случайная составляющая. Детерминированную часть временного ряда называют трендом. Этот временной ряд описывается так называемой трендовой моделью:
где а0, а. — коэффициенты тренда; k — количество функций времени, линейная комбинация которых определяет детерминированную составляющую;
С помощью этого случайного процесса в виде временных рядов можно, во-первых, исследовать динамику этого процесса, во-вторых, выделить факторы, существенным образом влияющие на показатели, и определить периодичность их максимального воздействия, в-третьих, провести интегральный или точечный прогноз показателя Y на некоторый промежуток времени. Метод главных компонентов Метод главных компонентов используется при рассмотрении некоторого множества случайных значений показателей Y в целях определения общих для них факторов (компонентов), от которых все они зависят. Степень зависимости i-го показателя от j-го компонента отражается величиной а, называемой нагрузкой i -го показателя на j-й компонент. Результатом анализа является модель главных компонентов, в которой каждый показатель представлен суммой произведений компонентов и их нагрузок:
где f — центрированные, нормированные и некоррелированные компоненты. Модель главных компонентов показывает, что и в какой степени определяет исследуемые показатели, а также объясняет связи между ними. Факторный анализ Факторный анализ по своей сути совпадает с методом главных компонентов, однако позволяет представить показатели через меньшее количество факторов (компонентов), поэтому используется при исследовании сложных систем управления, с большим числом показателей и сложными взаимосвязями между ними. Предполагается, что за множеством показателей системы стоит небольшое число независимых скрытых параметров, называемых факторами. Поиск по сайту: |
||||||
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.099 сек.) |