|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Полупроводники. Собственная и примесная проводимости полупроводниковПолупроводниками являются твердые тела, которые при абсолютном нуле температур характеризуются полностью занятой электронами валентной зоной, отделенной от зоны проводимости сравнительно узкой (DW< 1эв) запрещенной зоной. Различают собственные и примесные полупроводники. Собственными являются химически чистые полупроводники, а их проводимость называется собственной проводимостью. Типичными, наиболее широко распространенными собственными полупроводниками являются химические элементы германий и кремний. Внешние оболочки их атомов содержат по 4 валентных электрона, которые связаны с валентными электронами соседних атомов ковалентными связями. Упрощенная плоская схема расположения атомов в кристалле германия дана на рис. 3, где каждая черточка означает связь, осуществляемую одним электроном. В идеальном кристалле при нуле Кельвина такая структура ведет себя как диэлектрик, так как все валентные электроны участвуют в образовании связей, и, следовательно, не участвуют в проводимости. При повышении температуры тепловые колебания решетки могут привести к разрыву некоторых валентных связей, в результате чего часть электронов отщепляется и они становятся свободными. В покинутом электроном месте возникает вакансия – дырка, заполнить которую могут электроны из соседней пары. В результате дырка, как и освободившийся электрон, будет перемещаться по кристаллу. Движение электронов проводимости и дырок в отсутствии электрического поля является хаотическим. Если же кристалл поместить в электрическое поле, то электроны начнут двигаться против поля, дырки – по полю, что приведет к собственной проводимости германия, обусловленной как электронами, так и дырками. Согласно зонной теории, энергия DW, необходимая для перехода электрона с верхнего уровня валентной зоны на нижний уровень зоны проводимости, называется энергией активации (рис. 4). Переход электронов из заполненной валентной зоны в свободную зону создает в валентной зоне вакантные состояния – дырки (отмечены кружками на рис. 4). Такая дырка ведёт себя подобно частице с элементарным положительным зарядом. Под действием внешнего электрического поля одновременно с перемещением электронов вверх по энергетическим уровням зоны проводимости происходит заполнение вакантных состояний в валентной зоне электронами с нижележащих уровней этой зоны, эквивалентное перемещение положительных дырок вниз. Таким образом, в полупроводниках можно говорить об электронном и дырочном типах проводимости, хотя оба они являются следствием перемещения электронов. Проводимость собственных полупроводников, обусловленная движением электронов, называется электронной проводимостью или проводимостью п– типа (от лат. negativus – отрицательный). Проводимость собственных полупроводников, обусловленная квазичастицами – дырками, называется дырочной проводимостью или проводимостью р –типа (от лат. рositivus – положительный). Проводимость химически чистых полупроводников, обусловленная наличием в них электронов и дырок, называется собственной проводимостью, а сами полупроводники – собственными полупроводниками. Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.002 сек.) |