АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Звуковые волны

Читайте также:
  1. Длина волны.
  2. Звуковые волны. Ультразвук и его использование в технике и медицине.
  3. Звуковые волны. Ультразвук и его использование в технике и медицине.
  4. Звуковые эффекты.
  5. Когерентные волны. Время и длина когерентности
  6. КОЛЕБАНИЯ И ВОЛНЫ. АКУСТИКА. ЗВУК
  7. Механические волны. Плоская волна
  8. Механические волны. Свойства механических волн. Длина волны.
  9. Особенности воздействия ударной волны.
  10. Поворот с переменной галса при движении против волны.
  11. Понятие волны. Поперечные и продольные волны.

Волны на поверхности воды или на резиновом шнуре можно непосредственно увидеть. В прозрачной среде — воздухе или жидкости — волны невидимы. Но при определенных условиях их зато можно слышать.

Если длинную стальную линейку зажать в тисках, то, отклонив конец линейки от положения равновесия, мы возбудим ее колебания Линейка начнет звучать.Пластина в ходе колебаний сжимает прилегающий к одной из ее сторон слой воздуха и одновременно создает разрежение с другой стороны. Эти сжатия и разрежения чередуются во времени и распространяются в обе стороны в виде упругих продольных волн. Одна из них достигает нашего уха и вызывает вблизи него периодические колебания давления, которые воздействуют на слуховой аппарат. Ухо человека воспринимает в виде звука колебания, частота которых лежит в пределах от 17 до 20 000 Гц. Такие колебания называются акустическими. Акустика — это учение о звуке. Чем короче выступающий конец линейки, тем больше частота его колебаний.
Любое тело (твердое, жидкое или газообразное), колеблющееся со звуковой частотой, создает в окружающей среде звуковую волну.

Чаще всего звуковые волны достигают наших ушей по воздуху. Но звук распространяется и в воде, и твердых телах. Нырнув с головой но время купания, вы можете услышать звук, например, от удара двух камней, производимого в воде на большом расстоянии.

Хорошо проводит звук земля. Приложив ухо к земле, можно услышать топот копыт, когда еще не виден всадник.

Если поднести вплотную к уху конец длинной деревянной линейки и слегка постучать по другому ее концу ручкой, то будет отчетливо слышен звук. Отодвинув же линейку немного от уха, вы обнаружите, что звук почти перестает быть слышимым.
В вакууме звуковые волны распространяться не могут.

Плохо проводят звук такие материалы, как войлок, пористые панели, прессованная пробка и т. д. Эти материалы используют для звукоизоляции, т. е. для защиты помещений от проникновения в них посторонних звуков.

Для того чтобы мы могли уверенно ориентироваться в мире, наш мозг должен получать информацию о том, что происходит вокруг нас. Зрение и слух играют в этом главную роль. Осязание, обоняние и вкусовые ощущения менее существенны.

Прослушивая с помощью специальных устройств, например медицинского фонендоскопа, звуки в организме, можно получать важные сведения о работе сердца и других внутренних органов.

Звуковые волны распространяются с конечной скоростью. Обнаружить это можно так. Свет распространяется с огромной скоростью — 300 000 км/с. Поэтому вспышка от выстрела почти мгновенно достигает глаз. Звук же выстрела приходит с заметным запаздыванием. То же самое можно заметить, наблюдая с большого расстояния игру в футбол. Вы видите удар по мячу, а звук от удара приходит спустя некоторое время. Все, вероятно, замечали, что вспышка молнии предшествует раскату грома. Если гроза далеко, то время запаздывания грома достигает нескольких десятков секунд. Наконец, из-за конечной скорости звука появляется эхо. Эхо — это звуковая волна, отраженная от опушки леса, крутого берега, здания и т. д.

Скорость звука в воздухе при 0 °С равна 331 м/с. Это довольно большая скорость. Лишь совсем недавно самолеты начали летать со скоростями, превышающими скорость звука.

В жидкости скорость звука больше, чем в газе. Впервые скорость звука в воде была измерена в 1827 г. на Женевском озере в Швейцарии. При температуре 8 °С скорость звука в воде равна 1435 м/с.
В твердых телах скорость звука еще больше, чем в жидкостях. Например, в стали скорость звука при 15 °С равна 4980 м/с. То, что скорость звука в твердом теле больше, чем в воздухе, можно обнаружить так. Если ваш помощник ударит по одному концу рельса, а вы приложите ухо к другому концу, то будут слышны два удара. Сначала звук достигает уха по рельсам, а затем по воздуху.

По известной частоте колебаний и скорости звука в воздухе можно вычислить длину звуковой волны (см. § 44). Самые длинные волны, воспринимаемые ухом человека, имеют длину волны 19 м, а самые короткие — длину волны 17 мм.

Колебания со звуковой частотой (17—20 000 Гц) создают в окружающей среде звуковую волну, скорость которой зависит от свойств среды и температуры.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)