АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Водный режим почв

Читайте также:
  1. А. Рішення на застосування одного з перших трьох режимів радіаційного захисту
  2. Авессалом Подводный.Возвращённый оккультизм.
  3. Автонастройка режима
  4. Авторитарные режимы
  5. Авторитарные режимы.
  6. Анализ работы усилительного каскада в режиме покоя
  7. Анализ режимов работы электроприемников в цеховой электрической сети
  8. Б) изначально осуществляется подача теста, а затем реализуется рабочий режим.
  9. Б. Аварійний режим роботи трьохфазної мережі з ізольованою нейтраллю.
  10. Б. Рішення на застосування четвертого або п'ятого режимів радіаційного захисту
  11. Балансировочные режимы
  12. Балансировочные режимы и манёвры

[править | править вики-текст]

Материал из Википедии — свободной энциклопедии

Круговорот воды в природе

Во́дный режи́м почв — совокупность процессов поступления, передвижения и расхода влаги в почве.

Основной источник почвенной влаги — атмосферные осадки, количество и распределение которых во времени зависят от климата данной местности и метеорологических условий отдельных лет. В почву поступает меньше влаги, чем выпадает её в виде осадков, так как значительная часть задерживается растительностью, в особенности кронами деревьев. Вторым источником поступления влаги в почву является конденсация атмосферной влаги на поверхности почвы и в её верхних горизонтах (10—15 мм).Туман может оказывать значительно больший вклад в сумму осадков (до 2 мм/сутки), хотя и является более редким явлением. Практическое же значение тумана проявляется преимущественно в прибрежных районах, где в ночное время над поверхностью почвы собираются значительные массы влажного воздуха.

Часть поступившей на поверхность почвы влаги образует поверхностный сток, который наблюдается весной во время снеготаяния, а также после обильных дождей. Величина поверхностного стока зависит от количества выпавших осадков, угла наклона местности и водопроницаемости почвы. Выделяют также боковой (внутрипочвенный) сток, возникающий из-за различной плотности почвенных горизонтов. При этом вода, поступившая в почву, фильтруется через верхние горизонты, а дойдя до горизонта с более тяжёлым гранулометрическим составом, формирует водоносный горизонт, называемый почвенной верховодкой. Часть влаги из верховодки всё же просачивается в более глубокие слои, достигая грунтовых вод, которые в своей совокупности образуют грунтовый сток. При наличии же уклона местности часть влаги, сосредоточенной в водоносном горизонте, может стекать в пониженные участки рельефа.

Помимо стока, часть почвенной влаги расходуется на испарение. Из-за своеобразия и непостоянства свойств почвы как испаряющей поверхности, при одинаковых метеорологических условиях скорость испарения меняется сообразно изменению влажности почвы. Величина испарения может достигать 10—15 мм/сутки. Почвы с близким залеганием грунтовых вод испаряют гораздо больше воды, чем с глубоким.

Содержание

[убрать]

· 1 Типы почвенной влаги

· 2 Водные свойства почвы

· 3 Водный баланс почвы

· 4 Типы водного режима

· 5 Методы регуляции водного режима

· 6 Примечания

· 7 Библиография

· 8 Ссылки

· 9 См. также

Типы почвенной влаги[править | править вики-текст]

Формы воды в почве [1]
1 — частица почвы;
2 — гравитационная вода;
3 — гигроскопическая вода;
4 — почвенный воздух с парами воды;
5 — плёночная вода;
6 — зона открытой капиллярной воды;
7 — капиллярнная вода;
8 — зона замкнутой капиллярной воды;
9 — уровень грунтовых вод;
10 — грунтовые воды.

Движение воды в почве зависит от степени увлажнения и проявления разнообразных сил. Непременным условием передвижения влаги является разность сил (градиент). Все силы действуют на почвенную влагу в совокупности, но преобладает какая-то определённая в зависимости от влажности почвы. Соответственно

· Свободная (гравитационная) вода заполняет крупные почвенные поры, под действием силы тяжести образует нисходящий ток, формируя верховодку и частично просачиваясь в грунтовые воды. За счёт гравитационной воды в почве проходят элювиальные и иллювиальные процессы, из неё образуются все другие формы почвенной влаги. Сама может конденсироваться из парообразной, но преимущественно пополняется за счёт атмосферных осадков.

· Парообразная влага присутствует в почве при любом уровне её увлажнения, заполняя поры, свободные от капельно-жидкой. Различают активное и пассивное передвижение парообразной влаги. Первое обусловлено явлениями диффузии, второе происходит вместе опосредованно совместно с перемещением почвенного воздуха. Парообразная влага имеет большое значение в круговороте воды в почве, хотя на неё приходится не более 0,001 % от общей массы почвенной влаги. С течением времени пары воды из почвы улетучиваются ватмосферу, а запасы парообразной влаги пополняются из других форм, в том числе и физически связанных. При одинаковой температуре массы парообразной влаги перемещаются из участков, более насыщенных водяными парами, в менее насыщенные. При разной температуре движение осуществляется в область с меньшей температурой, но вовсе не обязательно, что в сторону более сухого участка. Парообразная влага циркулирует по всему профилю независимо от мощности и глубины залегания грунтовых вод.

· Лёд образуется в почвах при понижении температуры из других форм влаги последовательно — начиная от свободных и заканчивая связанными. Так, гравитационная вода замерзает в незасоленных почвах при температурах, близких к 0 °C, а максимально гигроскопическая — только при −78 °С [2]. Промерзание почвы, смоченной не сильнее её общей влагоёмкости, сопровождается улучшением почвенной структуры за счёт спрессования зёрен и комочков водой, замёрзшей в крупных порах, и коагуляции коллоидов в незамёрзших объёмах воды. Промерзание же переувлажнённой почвы влечёт за собой её обесструктуривание из-за разрыва льдом структурных элементов. Замёрзшие умеренно увлажнённые почвы обладают некоторой водопроницаемостью, тогда как переувлажнённые почвы вплоть до своего оттаивания являются водоупорами. Замерзание всей находящейся в почве воды наблюдается для грунтов при температурах [3]:

Грунт Интервал температур замерзания
Каолинит -10-20 °C
Лёгкий суглинок -20-30 °C
Пылеватый суглинок -40-50 °C
Аллювиальная глина -50-60 °C
Морская глина -60-70 °C
Монтмориллонит -75-80 °C

· Химически связанная (конституционная) влага — входит в состав молекул веществ (например Al(OH)3), образующих минеральную часть почвы, в виде гидроксильной группы, фактически участвуя лишь при их образовании (например, Al2O3 + 3 H2O → 2Al(OH)3). При прокаливании почвы в интервале 400—800 °С удаляется, что сопровождается разложением соответствующего минерала. Наибольшее количество химически связанной воды содержится в глинистых минералах [4], поэтому о её содержании в почве можно судить по степени глинистости грунта.

· Кристаллогидратная (кристаллизационная) влага — в отличие от химически связанной, входит в состав веществ целыми молекулами, образуякристаллогидраты — CaSO4·2H2O (гипс), Na2SO4·10H2O (мирабилит) и др. Удаляется скачкообразно при температурах 100—200 °С, причём каждая последующая молекула воды отщепляется при более высокой температуре, что приводит лишь к изменению физических свойств минералов, а не к их разложению, как в случае с химически связанной влагой. В больших количествах такая вода имеется в мирабилитовых солончаках.

Химически связанную и кристаллогидратную влагу часто объединяют под названием гидратной. Гидратная влага в почве не передвигается и растениям недоступна.

· Гигроскопическая влага — адсорбированная частицами почвы из атмосферы при её влажности менее 95 %, либо остающаяся в почве при её высушивании до воздушно-сухого состояния (обычно при влажности воздуха 50-70 %). Соответственно, при повышении влажности воздуха возрастает и величина гигроскопической влажности почвы. То же происходит и по мере утяжеления гранулометрического состава почвы, что особенно хорошо проявляется при высоком содержании в почве гумуса и ила с диаметром частиц менее 0,001 мм. По представлениям большинства исследователей, гигроскопическая влага не сплошь покрывает частицы почвы, а концентрируется лишь на некоторых участках.

·

Схема строения гигроскопической влаги по данным различных авторов
а - по Лебедеву [5], б - по Цункеру [1], в - по Кюну.

· Максимально-гигроскопическая влага адсорбируется почвой из атмосферы с относительной влажностью 95-100 %. При отрицательных температурах максимальная гигроскопическая влажность незасоленной почвы совпадает с процентным содержанием незамёрзшей воды в целом [6]. Адсорбционная способность частиц почвы зависит от их величины, формы и химического состава, причём даже на одной частице мощность слоя влаги может быть различной в зависимости от формы поверхности. При этом часть паров конденсируется на вогнутых участках, в результате чего суммарное количество воды имеет двойную природу, складываясь из адсорбированной и капиллярно-конденсированной влаги.

·

Схема строения максимальной гигроскопической влаги по данным различных авторов
а - по Лебедеву [5], б - по Цункеру [1], в - по Качинскому[7].

Гигроскопическая и максимально-гигроскопическая влага удаляются из почвы при нагреве до 100—105 °C, растениям эти формы недоступны.

· Плёночная (молекулярная) влага — дополнительная влага, адсорбируемая почвой из жидкой фазы поверх слоя максимально-гигроскопической. С частицами почвы связана слабее, чем последняя, причём рыхлость возрастает от внутренних слоёв ко внешним. По этой причине плёночная влага, хотя слабо, но усваивается растениями. Передвигается она под влиянием градиентов напора воды, температуры и влажности почвы, а также осмоса, её скорость же ограничивается десятками сантиметров в год [5].

· Капиллярная влага — удерживается и передвигается по мелким порам в почве под действием капиллярных сил. В порах более 8 мм в диаметре сплошной вогнутый мениск не образуется, так как капиллярные силы не выражены. В порах же менее 3 мкм вода находится преимущественно в адсорбированном состоянии, а капиллярное движение сильно затруднено или вообще отсутствует. Соответственно, наибольшая интенсивность капиллярного движения влаги наблюдается в почвах со средним гранулометрическим составом (лёссовидные суглинки и т.п.); осуществляется же оно сообразно градиентам влажности, температуры и химического потенциала (осмоса): в зоны с меньшим увлажнением и менее нагретые. Выделяется три вида капиллярной влаги: подпёртая (когда капилляры нижней своей частью сообщаются с водоносным горизонтом — почвенной верховодкой или грунтовыми водами), подвешенная (когда капиллярная влага оторвана от водоносных горизонтов и удерживается равнодействующей силой менисков) и посаженная (образующаяся при движении воды при резкой смене гранулометрического состава и на границах с внутрипочвенными пустотами). Капиллярная влага бывает открытая и закрытая (замкнутая) для проникновения воздуха. Закрытая находится непосредственно под водоносными горизонтами, и капилляры оказываются полностью заполнены водой, хотя и содержащей некоторое количество растворённого воздуха; вода же открытого типа чередуется в капиллярах с участками, заполненными воздухом и появляется в почве обычно через некоторое время после осадков или полива. Капиллярная влага легко доступна растениям и является одним из основных источников их водного питания; посредством её передвигается основная масса растворимых солей из нижних горизонтов.

· Внутриклеточная вода содержится в отмерших неразложившихся частях растений. До полного разложения растительной массы такая вода растениям не доступна. Большой процент её имеется в слабо- и неразложившихся торфах, дернине и лесной подстилке.

Водные свойства почвы[править | править вики-текст]

Водопроницаемость — свойство почвы воспринимать влагу с поверхности, проводить её между ненасыщенными водой горизонтами и фильтровать через толщу горизонтов, насыщенных водой. Водопроницаемость оказывает существенное влияние на ход почвообразовательных процессов, формирование поверхностного, бокового и грунтового стока воды и на интенсивность водной эрозии.

Проникает вода в почву с поверхности под воздействием силы тяжести по крупным порам, параллельно рассасываясь в стороны под влиянием капиллярных явлений. Процесс восприятия сухой или слабоувлажнённой почвой воды называется впитыванием воды, измеряется коэффициентом впитывания.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.005 сек.)