АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Принцип аргумента

Читайте также:
  1. I. Структурные принципы
  2. II. Принципы процесса
  3. II. Принципы средневековой философии.
  4. II. СВЕТСКИЙ УРОВЕНЬ МЕЖКУЛЬТУРНОЙ КОММУНИКАЦИИ ОТНОСИТЕЛЬНО ПРИНЦИПОВ ПОЛИТИЧЕСКОЙ СПРАВЕДЛИВОСТИ
  5. II. ЦЕЛИ, ЗАДАЧИ И ПРИНЦИПЫ ДЕЯТЕЛЬНОСТИ ВОИ
  6. II.4. Принципы монархического строя
  7. III. Принцип удовольствия
  8. III. Принципы конечного результата
  9. III. Принципы конечного результата.
  10. IV. Принцип реальности
  11. V.по функциональному принципу.
  12. VI. Биоэнергетические принципы аналитической терапии

 

Запишем характеристический полином САУ в виде

 

D(p) = a0 (p - p1) (p - p2) ... (p - pn) = 0.

 

 

 

 

Его корни

pi = i + j i = |pi|ejarg(pi),

 

где arg(pi) = arctg( i/ai) + k ,

.

 

Каждый корень можно изобразить вектором на комплексной плоскости (рис.68а), тогда разность p - pi изобразится разностью векторов (рис.68б), где p - любое число.

Еcли менять значение p произвольным образом, то конец вектора p - pi будет перемещаться по комплексно плоскости, а его начало будет оставаться неподвижным, так как pi - это конкретное неизменное значение.

В частном случае, если на вход системы подавать гармонические колебания с различной частотой , то p = j , а характеристический полином принимает вид:

D(j ) = a0 (j - p1) (j - p2) ... (j - pn).

 

При этом концы векторов j - pi будут находиться на мнимой оси (рис.68в). Если менять от - до + , то каждый вектор j - pi будет поворачиваться относительно своего начала pi на угол +p для левых и - p для правых корней (рис.68г).

Характеристический полином можно представить в виде

 

D(j ) = |D(j )|ejarg(D(j )),

где |D(j )| = a0 |j - p1| |j - p2|...|j - pn|,

arg(D(j )) = arg(j - p1) + arg(j - p2) +.. + arg(j - pn).

 

Пусть из n корней m - правые, а n - m - левые, тогда угол поворота вектора D(j ) при изменении от - до + равен

 

= (n - m) - m ,

 

или при изменении от 0 до + получаем

= (n - 2m) ( /2).

 

Отсюда вытекает правило: изменение аргумента вектора b при изменении частоты от - до + равно разности между числом левых и правых корней уравнения D(p) = 0, умноженному на , а при изменении частоты от 0 до + эта разность умножается на /2.

Это и есть принцип аргумента. Он положен в основе всех частотных критериев устойчивости. Мы рассмотрим два наиболее распространенных критерия: критерий Михайлова и критерий Найквиста.

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.)