|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Инерционные звенья второго порядка. При k = 1 передаточная функция звена: W(p) =
При k = 1 передаточная функция звена: W(p) = . В виду сложности вывода выражений для частотных характеристик рассмотрим их без доказательства, они показаны на рис.53. Асимптотическая ЛАЧХ колебательного звена до сопрягающей частоты 1 = 1/T1 совпадает с осью абсцисс, при дальнейшем увеличении частоты идет с наклоном - 40 дб/дек. То есть высокие частоты колебательное звено "заваливает" сильнее, чем апериодическое звено. Реальная ЛАЧХ при 1 значительно отличается от асимптотической. Это отличие тем существенней, чем меньше коэффициент демпфирования . Точную кривую можно построить, воспользовавшись кривыми отклонений, которые приводятся в справочниках. В предельном случае = 0 получаем консервативное звено, у которого при 1 амплитуда выходных колебаний стремится к бесконечности (рис.54).
ЛФЧХ при малых частотах асимтотически стремится к нулю. При увеличении частоты до бесконечности выходной сигнал поворачивается по фазе относительно входного на угол, стремящийся в пределе к - 180о. ЛФЧХ можно построить с помощью шаблона, но для этого нужен набор шаблонов для разных коэффициентов демпфирования. При уменьшении коэффициента демпфирования АФЧХ приближается к оси абсцисс и в пределе у консервативного звена она вырождается в два луча по оси абсцисс, при этом фаза выходных колебаний скачком меняется от нуля до - 180о при переходе через сопрягающую частоту (рис.54).
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.006 сек.) |