АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Технологии искусственного интеллекта

Читайте также:
  1. V. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ.
  2. VI. Педагогические технологии на основе эффективности управления и организации учебного процесса
  3. VII. Педагогические технологии на основе дидактического усовершенствования и реконструирования материала
  4. XII. Педагогические технологии авторских школ
  5. Адаптивные процессы и адаптационные технологии в социальной работе.
  6. Анализ деятельности организации в технологии антикризисного управления
  7. Анализ практического применения технологии «лечение алкоголизма без желания пациента»
  8. Анализ технологии законодательного процесса в Тюменской области.
  9. Аппаратное обеспечение информационной технологии.
  10. Аппаратурное оформление процессов биотехнологии
  11. Базовые понятия дисциплины «Информационные технологии».
  12. Бестраншейные технологии строительства подводных переходов магистральных трубопроводов

С развитием компьютерных технологий менялся смысл, вкладываемый в понятие информационной системы. Современная информационная система - это набор информационных технологий, направленных на поддержку жизненного цикла информации и включающего три основные процесса: обработку данных, управление информацией и управление знаниями. В условиях резкого увеличения объемов информации переход к работе со знаниями на основе искусственного интеллекта является, по всей вероятности, единственной альтернативой информационного общества.

Профессор Д.А. Поспелов дает следующее определение «интеллектуальной системы»: «Система называется интеллектуальной, если в ней реализованы следующие основные функции:

· накапливать знания об окружающем систему мире, классифицировать и оценивать их с точки зрения прагматической полезности и непротиворечивости, инициировать процессы получения новых знаний, осуществлять соотнесение новых знаний с ранее хранимыми;

· пополнять поступившие знания с помощью логического вывода, отражающего закономерности в окружающем систему мире или в накопленных ею ранее знаниях, получать обобщенные знания на основе более частных знаний и логически планировать свою деятельность;

· общаться с человеком на языке, максимально приближенном к естественному человеческому языку, и получать информацию от каналов, аналогичных тем, которые использует человек при восприятии окружающего мира, уметь формировать для себя или по просьбе человека (пользователя) объяснение собственной деятельности, оказывать пользователю помощь за счет тех знаний, которые хранятся в памяти, и тех логических средств рассуждений, которые присущи системе».

Перечисленные функции можно назвать функциями представления и обработки знаний, рассуждения и общения. Наряду с обязательными компонентами, в зависимости от решаемых задач и области применения в конкретной системе эти функции могут быть реализованы в различной степени, что определяет индивидуальность архитектуры. На рис. 12 в наиболее общем виде представлена структура интеллектуальной системы в виде совокупности блоков и связей между ними [10].

База знаний представляет собой совокупность сред, хранящих знания различных типов. Рассмотрим кратко их назначение.

Рис. 12. Общая структура интеллектуальной системы

База фактов (данных) хранит конкретные данные, а база правил - элементарные выражения, называемые в теории искусственного интеллекта продукциями. База процедур содержит прикладные программы, с помощью которых выполняются все необходимые преобразования и вычисления. База закономерностей включает различные сведения, относящиеся к особенностям той среды, в которой действует система. База метазнаний (база знаний о себе) содержит описание самой системы и способов ее функционирования: сведения о том, как внутри системы представляются единицы информации различного типа, как взаимодействуют различные компоненты системы, как было получено решение задачи.

База целей содержит целевые структуры, называемые сценариями, позволяющие организовать процессы движения от исходных фактов, правил, процедур к достижению той цели, которая поступила в систему от пользователя, либо была сформулирована самой системой в процессе ее деятельности в проблемной среде.

Управление всеми базами, входящими в базу знаний, и организацию их взаимодействия осуществляет система управления базами знаний. С ее же помощью реализуются связи баз знаний с внешней средой. Таким образом, машина базы знаний осуществляет первую функцию интеллектуальной системы.

Выполнение второй функции обеспечивает часть интеллектуальной системы, называемая решателем и состоящая из ряда блоков, управляемых системой управления решателя. Часть из блоков реализует логический вывод. Блок дедуктивного вывода осуществляет в решателе дедуктивные рассуждения, с помощью которых из закономерностей из базы знаний, фактов из базы фактов и правил из базы правил выводятся новые факты. Кроме этого данный блок реализует эвристические процедуры поиска решений задач, как поиск путей решения задачи по сценариям при заданной конечной цели. Для реализации рассуждений, которые не носят дедуктивного характера, т.е. для поиска по аналогии, по прецеденту и пр., используются блоки индуктивного и правдоподобного выводов. Блок планирования используется в задачах планирования решений совместно с блоком дедуктивного вывода. Назначение блока функциональных преобразований состоит в решении задач расчетно-логического и алгоритмического типов.

Третья функция - функция общения - реализуется как с помощью компоненты естественно-языкового интерфейса, так и с помощью рецепторов и эффекторов, которые осуществляют так называемое невербальное общение и используются в интеллектуальных роботах.

В зависимости от набора компонентов, реализующих рассмотренные функции, можно выделить следующие основные разновидности интеллектуальных систем:

· интеллектуальные информационно-поисковые системы;

· экспертные системы (ЭС);

· расчетно-логические системы;

· гибридные экспертные системы.

Интеллектуальные информационно-поисковые системы являются системами взаимодействия с проблемно-ориентированными (фактографическими) базами данных на естественном, точнее ограниченном как грамматически, так и лексически (профессиональной лексикой) естественном языке (языке деловой прозы). Для них характерно использование, помимо базы знаний, реализующей семантическую модель представления знаний о проблемной области, лингвистического процессора.

Экспертные системы являются одним из бурно развивающихся классов интеллектуальных систем. Данные системы в первую очередь стали развиваться в математически слабо формализованных областях науки и техники, таких как медицина, геология, биология и др. Для них характерна аккумуляция в системе знаний и правил рассуждений опытных специалистов в данной предметной области, а также наличие специальной системы объяснений.

Расчетно-логические системы позволяют решать управленческие и проектные задачи по их постановкам (описаниям) и исходным данным вне зависимости от сложности математических моделей этих задач. При этом конечному пользователю предоставляется возможность контролировать в режиме диалога все стадии вычислительного процесса. В общем случае, по описанию проблемы на языке предметной области обеспечивается автоматическое построение математической модели и автоматический синтез рабочих программ при формулировке функциональных задач из данной предметной области. Эти свойства реализуются благодаря наличию базы знаний в виде функциональной семантической сети и компонентов дедуктивного вывода и планирования.

В последнее время в специальный класс выделяются гибридные экспертные системы. Указанные системы должны вобрать в себя лучшие черты как экспертных, так и расчетно-логических и информационно-поисковых систем. Разработки в области гибридных экспертных систем находятся на начальном этапе.

Наиболее значительные успехи в настоящее время достигнуты в таком классе интеллектуальных систем, как экспертные системы (ЭС).

ЭС называют вычислительную систему использования знаний эксперта и процедур логического вывода для решения проблем, которые требуют проведения экспертизы и позволяют дать объяснение полученным результатам.

ЭС обладает способностями к накоплению знаний, выдаче рекомендаций и объяснению полученных результатов, возможностями модификации правил, подсказки пропущенных экспертом условий, управления целью или данными. ЭС отличают следующие характеристики: интеллектуальность, простота общения с компьютером, возможность наращивания модулей, интеграция неоднородных данных, способность разрешения многокритериальных задач при учете предпочтений лиц, принимающих решения (ЛПР), работа в реальном времени, документальность, конфиденциальность, унифицированная форма знаний, независимость механизма логического вывода, способность объяснения результатов.

В настоящее время можно выделить следующие основные сферы применения ЭС: диагностика, планирование, имитационное моделирование, предпроектное обследование предприятий, офисная деятельность, а также некоторые другие.

Практика показывает, что по сравнению со статическими ЭС гораздо больший эффект дают ЭС, используемые в динамических процессах (экспертные системы реального времени - ЭСРВ), которые занимают около 70% рынка таких систем и находят все более широкое применение в управлении непрерывными процессами (химические производства, цементная промышленность, атомная энергетика и т.д.).

По сравнению с общей схемой (см. рис. 12) в ЭС часто отсутствует возможность общения с системой на близком к естественному языке или с использованием визуальных средств, поскольку взаимодействие с такой системой осуществляется с использованием языка типа ПРОЛОГ или с применением ПРОЛОГ-идей.

Важное место в теории искусственного интеллекта (ИИ) занимает проблема представления знаний. В настоящее время выделяют следующие основные типы моделей представления знаний:

· Семантические сети, в том числе функциональные;

· Фреймы и сети фреймов;

· Продукционные модели.

Семантические сети определяют как граф общего вида, в котором можно выделить множество вершин и ребер. Каждая вершина графа представляет некоторое понятие, а дуга - отношение между парой понятий. Метка и направление дуги конкретизируют семантику. Метки вершин семантической нагрузки не несут, а используются как справочная информация.

Различные разновидности семантических сетей обладают различной семантической мощностью, следовательно, можно описать одну и ту же предметную область более компактно или громоздко.

Фреймом называют структуру данных для представления и описания стереотипных объектов, событий или ситуаций. Фреймовая модель представления знаний состоит из двух частей:

1. набора фреймов, составляющих библиотеку внутри представляемых знаний;

2. механизмов их преобразования, связывания и т.д.

Существует два типа фреймов:

1. образец (прототип) - интенсиональное описание некоторого множества экземпляров;

2. экземпляр (пример) - экстенсиональное представление фрейм-образца.

В общем виде фрейм может быть представлен следующим кортежем:

<ИФ, (ИС, ЗС, ПП),..., (ИС, ЗС, ПП)>,
где ИФ - имя фрейма; ИС - имя слота; ЗС - значение слота; ПП - имя присоединенной процедуры (необязательный параметр).

Слоты - это некоторые незаполненные подструктуры фрейма, заполнение которых приводит к тому, что данный фрейм ставится в соответствие некоторой ситуации, явлению или объекту.

В качестве данных фрейм может содержать обращения к процедурам (так называемые присоединенные процедуры). Выделяют два вида процедур: процедуры-демоны и процедуры-слуги. Процедуры-демоны активизируются при каждой попытке добавления или удаления данных из слота. Процедуры-слуги активизируются только при выполнении условий, определенных пользователем при создании фрейма.

Продукционные модели - это набор правил вида «условия - действие», где условиями являются утверждения о содержимом базы данных, а действия представляют собой процедуры, которые могут изменять содержимое базы данных.

Формально продукция определяется следующим образом:

(i); Q; Р; C; А→ В; N,
где (i) - имя продукции (правила); Q - сфера применения правила; Р - предусловие (например, приоритетность); С - предикат (отношение); A→B - ядро; N - постусловия (изменения, вносимые в систему правил).

Практически продукции строятся по схеме «ЕСЛИ» (причина или иначе посылка), «ТО» (следствие или иначе цель правила).

Полученные в результате срабатывания продукций новые знания могут использоваться в следующих целях:

· понимание и интерпретация фактов и правил с использованием продукций, фреймов, семантических цепей;

· решение задач с помощью моделирования;

· идентификация источника данных, причин несовпадений новых знаний со старыми, получение метазнаний;

· составление вопросов к системе;

· усвоение новых знаний, устранение противоречий, систематизация избыточных данных.

Языки программирования, применяемые для работы в области ЭС, - это, как правило, или проблемно-ориентированные языки (Фортран, Паскаль и т.д.), или языки обработки текстов (Лисп, Пролог). Проблемно-ориентированные языки разработаны для специального класса задач. Например, Фортран удобен для выполнения алгебраических вычислений и чаще всего применяется в научных, математических и статистических вычислениях. Языки обработки текстов разработаны для прикладных областей искусственного интеллекта. Лисп имеет механизмы для манипулирования символами в форме списковых структур. Список является просто набором элементов, заключенных в скобки, где каждый элемент может быть или символом, или другим списком. Списковые структуры являются удобным строительным материалом для представления сложных понятий. В языке Лисп все отношения между объектами описываются через списки, содержащие отношения объекта с другими объектами.

Язык Лисп существует в разных версиях. Например, Интерлисп и Маклисп имеют различные средства поддержки (редакторы и средства отладки), но одинаковый синтаксис.

20. Основные понятия баз данных: назначение, программное обеспечение, разновидности и примеры баз данных, логическая и физическая структуры баз данных.

Рассмотрим общий смысл понятий базы данных (БД) и системы управления базами данных (СУБД).

С самого начала развития вычислительной техники образовались два основных направления использования ее.

Первое направление - применение вычислительной техники для выполнения численных расчетов, которые слишком долго или вообще невозможно производить вручную. Становление этого направления способствовало интенсификации методов численного решения сложных математических задач, развитию класса языков программирования, ориентированных на удобную записьчисленных алгоритмов, становлению обратной связи с разработчиками новых архитектур ЭВМ.

Второе направление, это использование средств вычислительной техники в автоматических или автоматизированных информационных системах. В самом широком смысле информационная система представляет собой программный комплекс, функции которого состоят в поддержке надежного хранения информации в памяти компьютера, выполнении специфических для данного приложения преобразований информации и/или вычислений, предоставлении пользователям удобного и легко осваиваемого интерфейса. Обычно объемы информации, с которыми приходится иметь дело таким системам, достаточно велики, а сама информация имеет достаточно сложную структуру. Классическими примерами информационных систем являются банковские системы, системы резервирования авиационных или железнодорожных билетов, мест в гостиницах и т.д.

На самом деле, второе направление возникло несколько позже первого. Это связано с тем, что на заре вычислительной техники компьютеры обладали ограниченными возможностями в части памяти. Понятно, что можно говорить о надежном и долговременном хранении информации только при наличии запоминающих устройств, сохраняющих информацию после выключения электрического питания. Оперативная память этим свойством обычно не обладает. В начале, использовались два вида устройств внешней памяти: магнитные ленты и барабаны. При этом емкость магнитных лент была достаточно велика, но по своей физической природе они обеспечивали последовательный доступ к данным. Магнитные же барабаны (они больше всего похожи на современные магнитные диски с фиксированными головками) давали возможность произвольного доступа к данным, но были ограниченного размера.

Легко видеть, что указанные ограничения не очень существенны для чисто численных расчетов. Даже если программа должна обработать (или произвести) большой объем информации, при программировании можно продумать расположение этой информации во внешней памяти, чтобы программа работала как можно быстрее.

С другой стороны, для информационных систем, в которых потребность в текущих данных определяется пользователем, наличие только магнитных лент и барабанов неудовлетворительно. Представьте себе покупателя билета, который стоя у кассы должен дождаться полной перемотки магнитной ленты. Одним из естественных требований к таким системам является средняя быстрота выполнения операций.

Именно требования к вычислительной технике со стороны не численных приложений вызвали появление съемных магнитных дисков с подвижными головками, что явилось революцией в истории вычислительной техники. Эти устройства внешней памяти обладали существенно большей емкостью, чем магнитные барабаны, обеспечивали удовлетворительную скорость доступа к данным в режиме произвольной выборки, а возможность смены дискового пакета на устройстве позволяла иметь практически неограниченный архивданных.

С появлением магнитных дисков началась история систем управления данными во внешней памяти. До этого каждая прикладная программа, которой требовалось хранить данные во внешней памяти, сама определяла расположение каждой порции данных на магнитной ленте или барабане и выполняла обмены между оперативной и внешней памятью с помощью программно-аппаратных средств низкого уровня (машинных команд или вызовов соответствующих программ операционной системы). Такой режим работы не позволяет или очень затрудняет поддержание на одном внешнем носителе нескольких архивов долговременно хранимой информации. Кроме того, каждой прикладной программе приходилось решать проблемы именования частей данных и структуризации данных во внешней памяти.

Историческим шагом стал переход к использованию систем управления файлами. С точки зрения прикладной программы файл - этоименованная область внешней памяти, в которую можно записывать и из которой можно считывать данные. Правила именования файлов, способ доступа к данным, хранящимся в файле, и структура этих данных зависят от конкретной системы управления файлами и, возможно, от типа файла. Система управления файлами берет на себя распределение внешней памяти, отображениеимен файлов в соответствующие адреса внешней памяти и обеспечение доступа к данным.

Любая задача обработки информации и принятия решений может быть представлена в виде схемы, показанной на рис. 1.1.


Рис. 1.1. Схема решения задач обработки информации и принятия решений: x-штрих, y-штрих - входная и выходная информация; f - внутреннее операторное описание


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.007 сек.)