АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Нейронные системы и системы извлечения знаний

Читайте также:
  1. I. Формирование системы военной психологии в России.
  2. II. Цель и задачи государственной политики в области развития инновационной системы
  3. II. Экономические институты и системы
  4. IV. Механизмы и основные меры реализации государственной политики в области развития инновационной системы
  5. SCADA-системы
  6. SCАDA-системы: основные блоки. Архивирование в SCADA-системах. Архитектура системы архивирования.
  7. TRACE MODE 6: компоненты инструментальной системы
  8. А). Системы разомкнутые, замкнутые и комбинированные.
  9. А. И. Герцен – основатель системы вольной русской прессы в эмиграции. Литературно-публицистическое мастерство
  10. Абиотические компоненты экосистемы.
  11. Абстрактные линейные системы
  12. Автоматизированные системы контроля за исполнением документов

До сих пор нейросети рассматривались нами лишь как инструмент предсказания, но не понимания. Действительно, классический нейросетевой подход - метод черного ящика - предполагает создание имитационной модели, без явной формулировки правилпринятия решений нейросетью. Вернее, эти правила содержатся в весах обученной нейросети, но понять их, переформулировав на язык "если - то " не представлялось возможным. В этой лекции мы продемонстрируем методику, позволяющую строить подобные правила, объясняющие нейросетевые решения. Нейросети, таким образом, можно использовать не только для предсказаний, но и для извлечения знаний из баз данных.

Традиционно построение правил вывода и баз знаний считается прерогативой экспертных систем - направления искусственного интеллекта, которое претендовало в начале семидесятых годов заменить собою искусственные нейронные сети в задачах обработки информации. Экспертные системы были ориентированы именно на обработку данных с помощью некоторых правил вывода, которые предполагалось извлекать у экспертов в той или иной области знаний. Экспертные системы были призваны реализовывать цепочки рассуждений, имитирующих анализ ситуации экспертом-человеком. По сути в 70-е годы сам термин "искусственный интеллект" был синонимом разработки экспертных систем, или инженерии знаний.

Это направление, однако, столкнулось с рядом принципиальных трудностей. В частности, инженеры знаний должны были извлекать их у очень квалифицированных экспертов, которые, вообще говоря, не стремились поделиться информацией. Знания - большая ценность, и передавать их, чтобы помочь создать себе легко тиражируемую замену и, в конечном счете, обесценить себя как специалиста, стремился далеко не каждый. Но даже и при наличии соответствующего желания, эксперт не всегда мог внятно сформулировать те правила, которыми он пользуется при подготовке экспертного заключения. Очень многое в его работе связано с интуитивными качественными оценками, распознаванием ситуации в целом, то есть с не формализуемыми процедурами (мы знаем, что это как раз та ситуация, в которой особенно отчетливо проявляются преимущества нейросетевого подхода). Но даже если все трудности оказывались преодоленными, достоинства построенной экспертной системы оказывались не абсолютными, поскольку именно явная формализация правил вывода, а не компьютерная система сама по себе представляла основную ценность. В этом смысле весьма показателен опыт создания в 70-е годы в Стэнфордском университете экспертной системы MYCIN, с помощью которой врачи должны были повысить надежность диагностики септического шока. Септический шок, дававший в случае развития 50% летальных исходов у прооперированных больных вовремя диагностировался врачами лишь в половине случаев. Экспертная система MYCIN позволила повысить качество диагностики почти до 100%. Однако, после того, как врачи познакомились с ее работой, они очень быстро сами научились правильно ставить соответствующий диагноз. Необходимость в MYCIN отпала и она превратилась в учебную систему. Таким образом, основная польза проекта состояла именно в извлечении знаний в понятном для человека виде.

По мнению Стаббса, известного американского специалиста в области нейросетевых приложений, экспертные системы "пошли" только в кардиологии. Они эффективно заменили объемистые руководства по анализу электрокардиограмм, содержащие множество достаточно ясно сформулированных правил оценки их многообразных особенностей.

Нейронные сети выглядят предпочтительнее экспертных систем, позволяя одновременно анализировать множество в общем случае неточных и неполных параметров и не требуя при этом явной формализации правил вывода. Однако, объяснение тех или иных рекомендаций, полученных с помощью нейросетевого анализа, является требованием, которое обычно предъявляют специалисты, желающие использовать нейросетевые технологии. На первый взгляд здесь-то и находится их слабое место. Действительно, в такой области обработки информации, как извлечение знаний, нейронные сети стали применяться только относительно недавно. Это еще одна сфера, в которой доселе господствовал только традиционный искусственный интеллект. Рассмотрим ее более подробно.


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)