АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция

Парадоксы теоретического мышления Галилея

Читайте также:
  1. XI. РОЛЬ НОВОЙ ФИЗИКИ В СОВРЕМЕННОМ РАЗВИТИИ ЧЕЛОВЕЧЕСКОГО МЫШЛЕНИЯ
  2. В английском языке есть только одно слово для обозначения процесса мышления.
  3. В заключении выпускной квалифицированной работы обобщены результаты проведенного теоретического и практического исследования, сформулированы основные выводы.
  4. Виды мышления и типы репрезентаций
  5. Виды мышления. Мышление и его исследование в основных психологических подходах.
  6. Восемь паттернов ограниченного мышления
  7. ГАЛИЛЕЯНИН
  8. Галилеянин
  9. ГЛАВА 1.НАУЧНО-ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ФОРМИРОВАНИЯ ЭЛЕМЕНТОВ ДИЗАЙНЕРСКОГО МЫШЛЕНИЯ.
  10. Декартовы «Размышления» как прообраз философского самоосмысления
  11. Диагностика мышления школьников «Понимание переносного смысла пословиц и метафор» Б.В. Зейгарник
  12. Для размышления

Мы не можем найти у Галилея систематически продуманной исследовательской программы именно потому, что почти все его важнейшие понятия содержат в себе противоречие.

Рассмотрим с этой точки зрения исходные понятия галилеевской механики и ее методологические принципы.

Начнем с понятия континуума. Здесь Галилей, как мы видели, утверждает, что континуум состоит из неделимых, природа которых парадоксальна: они сами не имеют величины, но из их бесконечного множества составляется любая конечная величина. Тут одно непонятное - лишенная величины составная часть тела - объясняется через другое непонятное: актуально существующее бесконечное множество. Это понятие-парадокс получает название бесконечно малого и играет важную роль как в механике Галилея, так и в его математике. О том, что Галилей хорошо понимал противоречивый характер своего учения о неделимых (бесконечно малых), свидетельствует тот факт, что когда его ученик Кавальери решил на базе этого понятия создать новую геометрию - геометрию неделимых, не кто иной, как сам Галилей, откровенно говорил ему о сомнительности его исходных принципов. Хотя письмо Галилея к Кавальери и не сохранилось, но по некоторым высказываниям самого Галилея и по ответу Кавальери на письмо Галилея можно судить о том, что именно понятие суммы бесконечно малых Галилей считал теоретически несостоятельным. Вот что пишет Кавальери, в сдержанной форме упрекая самого Галилея в противоречивости его понятия неделимых: "Чтобы не казалось, что я не проявил должного почтения к столь великому учителю, я прошу читателя обратить внимание на то, что Галилей в цитированном выше месте придерживается двух предпосылок: что непрерывное состоит из неделимых (в частности, линия - из точек, бесконечных по числу) и что существует линия, бó льшая, чем другая линия... Итак, он признает, что некоторая совокупность бесконечного числа членов может быть больше другой, что не противоречит, но благоприятствует моей точке зрения". Упрек Кавальери Галилею вполне резонен: ведь возражая Кавальери, считавшему, что одно бесконечное может быть больше другого, Галилей писал, что одно бесконечное не может быть больше, меньше или равно другому бесконечному, ибо между ними не существует отношения.

Отсюда видно, что сам Галилей не пришел к определенному и однозначному решению этого вопроса. В этом пункте нельзя не согласиться с выводом С. Я. Лурье, подробно изучавшего диалог Кавальери и Галилея: "...Галилей вообще не выставил никакой связной математической теории неделимых: стоя на атомистической точке зрения (непрерывное состоит из неделимых, линия состоит из точек), он в то же время видел логические несообразности, к которым приводила эта теория; компромисс Кавальери его не удовлетворял, он не хотел понять Кавальери, чувствовал, что математический атомизм необходим для дальнейшего прогресса математики, но не знал, как сделать его теоретически приемлемым".

Однако с помощью этого самого противоречивого понятия "неделимого", или "бесконечно малого", Галилей вводит важную категорию механики - "мгновенную скорость", отменяя тем самым принципы аристотелевской теории движения. При обсуждении вопроса о бесконечной медленности, представляющей собой опять-таки совпадение противоположностей - покоя и движения, аристотелик Симпличио возражает против введения этого понятия, указывая на грозящий здесь парадокс Зенона: "Но если степени все большей и большей медленности бесчисленны, то они никогда не могут быть все исчерпаны. Таким образом, подымающийся камень никогда не пришел бы в состояние покоя, но пребывал бы в бесконечном, постоянно замедляющемся движении, чего, однако, в действительности никогда не бывает". На это Галилей - Сальвиати дает ответ, формулируя ключевое понятие своей динамики - понятие мгновенной скорости: "Это случилось бы, синьор Симпличио, если бы тело двигалось с каждой степенью скорости некоторое определенное время; но оно только проходит через эти степени, не задерживаясь больше, чем на мгновение; а так как в каждом, даже в самом малом промежутке времени содержится бесконечное множество мгновений, то их число является достаточным для соответствия бесконечному множеству уменьшающихся степеней скорости". Галилей здесь опять-таки прибегает к понятию суммы бесконечно большого числа бесконечно малых отрезков времени, которым соответствует сумма бесконечно большого числа "мгновенных скоростей". Но что же такое "мгновенная скорость"? Коль скоро мгновение - это бесконечно малая "доля" времени, то, стало быть, само мгновение - это уже не время; мгновение - это не конечный отрезок времени, каким бы малым он ни был; это нечто среднее между вневременностью и временем, точно так же, как бесконечно малый отрезок пространства не есть ни математическая точка, ни как угодно малый отрезок пространства. "Мгновенная скорость" - это уже не скорость в собственном смысле слова, ибо всякая скорость предполагает движение, а движение может происходить только во времени. Значит, мгновенная скорость - это нечто вроде неподвижного начала движения. По Галилею, всякая скорость складывается из бесконечной суммы мгновенных скоростей, и это обращение к бесконечной сумме представляет собой как бы магическое заклинание, с помощью которого совершается прыжок от вневременных мгновений к времени, от внепространственных неделимых к пространству, от "неподвижных составляющих" движения к самому движению - одним словом, "переход в другой род". Средством этого перехода оказывается дифференциал, ибо именно дифференциалом и является "мгновенная скорость" у Галилея.

С помощью понятия "мгновенной скорости" Галилей решает проблему континуума. Средством решения, как видим, и здесь оказывается обращение к парадоксу, которое - заметим - Галилей, хотя и не без колебаний, позволяет себе, но не терпит у других, например у своего ученика Кавальери. Через понятие бесконечно малого, которое, если говорить строго, не есть ни реальность математическая (по крайней мере в смысле традиционной античной математики), ни реальность физическая, Галилей и осуществляет построение физики на основе математики. С какими противоречиями он при этом постоянно сталкивается, мы уже видели. Именно потому, что в понятии бесконечно малого с самого начала заложено противоречие, это противоречие с неизбежностью воспроизводится на каждом следующем этапе развития галилеевской мысли. Этим объясняется, почему Декарт не мог принять многих утверждений Галилея, в частности его тезиса о переходе падающего тела через все степени медленности. В 1639 г. в письме к Мерсенну Декарт замечает: "Следует знать, что бы ни говорили против этого Галилей и некоторые другие, что тела, начинающие падать или двигаться...вовсе не проходят через все степени медленности, а имеют с первого момента определенную скорость, которая затем значительно возрастает".

Лейбниц высказывает в адрес Галилея упрек еще более серьезный, имея в виду уже не частный вопрос: он считает, что Галилей не развязал узел парадоксов континуума, а разрубил его. Этот упрек, несомненно, справедлив. Сам Лейбниц считал проблему континуума главной в натурфилософии и посвятил ее решению не меньше сил, чем в свое время Аристотель.

 

 


1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 |

Поиск по сайту:



Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.003 сек.)