|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Проблема идеализацииНе удивительно поэтому, что философское обоснование научного знания предполагает рассмотрение проблемы конструирования. Эту проблему активно обсуждали на протяжении XVII и XVIII вв., и прежде всего в связи с обоснованием математики. Лейбниц, в частности, считал, что хотя математика и конструирует свои понятия, но все же полностью свести ее образования к конструкциям не представляется возможным. Что же касается Канта, то он здесь принимает однозначное решение: понятия математики опираются на созерцание (априорное), а потому представляют собой результаты конструкции. Ведь соединить понятие с созерцанием пространства или времени - это значит конструировать математический предмет. "Математическое знание, - пишет Кант в "Критике чистого разума", - есть познание посредством конструирования понятий. Но конструировать понятие - значит показать a priori соответствующее ему созерцание... Так, я конструирую треугольник, показывая предмет, соответствующий этому понятию, или при помощи одного лишь воображения в чистом созерцании, или вслед за этим также на бумаге в эмпирическом созерцании, но и в том и в другом случае совершенно a priori, не заимствуя для этого образцов ни из какого опыта". Знание, полученное путем конструирования, не есть продукт одного только мышления, оно обязательно предполагает созерцание и носит не чисто дискурсивный характер в отличие от знания, опирающегося на одни лишь понятия, как, например, философское. Геометрия конструирует свои понятия, опираясь на созерцание пространства: сконструированный ею предмет имеет не только величину (количество), но и определенную фигуру (качество). Арифметика же, по Канту, имеет дело с чистым синтезом однородного многообразия, прибегая при этом к созерцанию времени. Она конструирует, говорит Кант, чистое количество - число. Кант, как видим, рассматривает число как величину, т.е. количество, - подход, характерный для математики нового времени в отличие от древнегреческой. Кантовское понимание математики отличается от лейбницева ее понимания. Последний даже геометрию хотел бы обосновать с помощью одних лишь понятий, считая, что всякая конструкция уступает логическим средствам по своей строгости и чистоте, ибо она прибегает к воображению. Кант же не только геометрию, но даже и арифметику рассматривает как науку, в основе которой лежит воображение (чистое созерцание). Алгебра, по Канту, тоже конструирует свой предмет, но не так, как геометрия, а с помощью символов. При таком способе конструирования "понятия, в особенности понятия об отношении между величинами, выражены в созерцании знаками, и, таким образом... все выводы гарантированы от ошибок тем, что каждый из них показан наглядно". Достоверность математического знания, по Канту, гарантирована именно тем, что в основе математики лежит конструкция. Уважение к математике как самой надежной из наук составляет отличительную особенность XVII и XVIII вв., и Кант здесь верен своему времени. Однако математика, говорит Кант, не всегда была наукой, какой мы ее видим сегодня. Нужна была настоящая революция в способе мышления, чтобы перейти к конструированию математических понятий. "С самых ранних времен, до которых простирается история человеческого разума, математика пошла верным путем науки у достойных удивления древних греков. Однако не следует думать, что математика так же легко нашла... этот царский путь, как логика... Наоборот, я полагаю, что она долго действовала ощупью... и перемена, равносильная революции, произошла в математике благодаря чьей-то счастливой догадке. Для нас не сохранилась история этой революции в способе мышления, гораздо более важной, чем открытие пути вокруг знаменитого мыса... Свет открылся тому, кто впервые доказал теорему о равнобедренном треугольнике... Он понял, что его задача состоит не в исследовании того, что он усматривал в фигуре или в одном лишь понятии, как бы прочитывая в ней ее свойства, а в том, чтобы создать фигуру посредством того, что он сам a priori сообразно понятиям вложил в нее и показал (путем построения). Он понял, что иметь о чем-то верное априорное знание он может лишь в том случае, если приписывает вещи только то, что необходимо следует из вложенного в нее им самим сообразно его понятию". Математическое естествознание, по убеждению Канта, конструирует свой предмет, подобно математике. Однако естествознание встало на этот путь много позже, чем это сделала геометрия и арифметика. И тут тоже понадобилась целая революция, которую Кант связывает с деятельностью Галилея, Торричелли и других ученых XVII в. "Ясность для всех естествоиспытателей возникла тогда, когда Галилей стал скатывать с наклонной плоскости шары с им самим избранной тяжестью, когда Торричелли заставил воздух поддерживать вес, который, как он заранее предвидел, был равен весу известного ему столба воды, или когда Шталь в еще более позднее время превращал металлы в известь и известь в металлы..." Действительно, эксперимент как средство конструирования идеальной модели природного процесса стоит у истоков точного естествознания, начало которому положил XVII век. Как и Декарт, Кант совершенно справедливо отличает естествознание нового времени, основанное на эксперименте и осуществляемое по заранее намеченному плану (вспомним "mathesis universalis" Декарта), от античного и средневекового изучения природы, которое основывалось преимущественно на наблюдении и не стремилось "вырвать" у природы ее тайны путем пыток и - применительно к живой природе - истязаний в самом прямом смысле слова. Естествознание до XVII в., подобно математике Древнего Востока, действовало ощупью, и только сознательное обращение к конструированию естественнонаучных понятий, убеждение в активной роли человеческого познания помогло открыть новый путь исследования природы. "Естествоиспытатели поняли, что разум видит только то, что сам создает по собственному плану, что он с принципами своих суждений должен идти впереди согласно постоянным законам и заставлять природу отвечать на его вопросы, а не тащиться у нее, словно на поводу... Разум должен подходить к природе, с одной стороны, со своими принципами, лишь сообразно с которыми согласующиеся между собой явления и могут иметь силу законов, и, с другой стороны, с экспериментами, придуманными для того, чтобы черпать из природы знания, но не как школьник, которому учитель подсказывает все, что он хочет, а как судья, заставляющий свидетеля отвечать на предлагаемые им вопросы". Это бэконовская программа исследования, при котором хозяином положения является сам человек. Эту же идею мы видели у Декарта. Кант подытоживает то, что сделано семнадцатым и восемнадцатым веками. Главная задача науки - устанавливать законы природы. Но при этом она руководствуется принципами, идущими от разума, который не пассивно воспроизводит то, что "подсказывает" ему природа, а берет инициативу в свои руки и принуждает природу отвечать на интересующие его вопросы. Такое "принуждение к ответу" осуществляет эксперимент. Вот почему Кант вправе заявить, что "мы a priori познаем в вещах лишь то, что вложено в них нами самими". В прежнем естествознании инициатива принадлежала природе, в новом она принадлежит естествоиспытателю. Главный вопрос, который при этом встает перед философом, гласит: если природой мы назовем тот мир, который "создается нами самими", то где же окажется "мир сам по себе", не являющийся продуктом человеческой деятельности? Ведь не думаем же мы всерьез, что мы суть боги и что природа, как она существует сама по себе, есть дело наших рук и нашей головы. Мы прекрасно сознаем, что не сами создали себя. И даже если согласиться с Кантом, что в нравственном отношении человек только сам может обрести свое Я, свою свободу, то физическое существование человека не есть дело его собственной воли и деятельности. Как ответил Кант на этот вопрос, мы уже рассматривали выше. Но есть и второй, не менее существенный вопрос: если в ходе эксперимента мы задаем как бы идеальные параметры природных процессов, то откуда берутся и что представляют собой эти наши идеализации? Являются ли они целиком произвольными или же им что-то "соответствует" в объективном мире? Этот вопрос тоже оказался предметом многолетних размышлений Канта, о чем свидетельствует его неоконченная работа, по содержанию примыкающая к "Метафизическим началам естествознания", отрывок из которой был издан А. Краузе в 1888 г. под названием "Об основанном на априорных принципах переходе от метафизических начал естествознания к физике". В этой работе вместе с целым рядом других вопросов Кант обсуждает и проблему идеализации как одну из предпосылок превращения естествознания в математическую науку. Все эксперименты, начиная с простейших, требуют определенных технических средств, или, как Кант говорит, машин. Так, при измерении веса - этом древнейшем из экспериментов - прибегают обычно к машине, которая испокон веков обслуживала человека, - рычагу. Предполагается, что равноплечее коромысло весов, опирающееся на неподвижную точку, устанавливается горизонтально, если вес двух тел, прикрепленных к его плечам, одинаков. Однако это утверждение, если подойти строго, будет верным только при условии, что сам рычаг мыслится как абсолютно твердое тело. У Архимеда он представлял собой, вообще говоря, что-то вроде "математического тела". Аналогичное рассуждение имеет место и в любом другом эксперименте: так, наклонная плоскость, по которой Галилей скатывал шары, предполагалась абсолютно гладкой, шары, в свою очередь, абсолютно упругими и т.д. Любой экспериментатор прекрасно знает, что в реальности абсолютно твердых, абсолютно гладких и т.д. материалов не бывает, поэтому он имеет дело с приблизительными, а не точными величинами, но само условие эксперимента, его теоретическое обоснование требует допущения идеальных моделей. Именно разрыв между мыслимым (идеальным) и реальным в античной и средневековой науке требовал водораздела между точным знанием (наукой), с одной стороны, и приблизительным, механикой и техникой, - с другой. Но математическая физика как раз этот разрыв и хочет преодолеть. Что же в таком случае является условием возможности ее идеализаций? Послушаем Канта: "Субъективная весомость материи, т.е. определенность ее количества экспериментом взвешивания, предполагает твердость (сопротивление взаимно соприкасающейся материи тела при сдвигании) прямолинейного тела, названного рычагом... При этом сам рычаг мыслится без веса, просто по его принятой совершенной твердости. Но как возможна такая твердость?" На первый взгляд кажется, что ответ на поставленный вопрос Кант должен искать, исследуя наши познавательные способности: ведь именно сообразно своим принципам разум, по Канту, создает идеальные конструкции. Это, конечно, не значит, что он создает их произвольно. Так, например, конструируя в геометрии понятие треугольника, мы нуждаемся в созерцании пространства, а последнее дано нам в качестве априорной формы созерцания внешних явлений. Стало быть, если мы конструируем рычаг, мы тоже должны обращаться к чему-то, что дано человеческому субъекту, так сказать, объективно. При этом не имеет принципиального значения, из какого материала сделан данный рычаг (это важно при практическом употреблении его, а не при теоретическом рассуждении), так же как для изучения свойств геометрической фигуры несущественно, каким орудием и на какой поверхности мы ее чертим. Тем не менее, ища ответа на поставленный вопрос, Кант обращается не к структуре познающего субъекта, а к характеру познаваемого объекта. "В рычаге как машине еще до внешних движущих сил взвешивания следует мыслить внутреннюю движущую силу, а именно силу, благодаря которой возможен сам рычаг как таковой, т.е. материя рычага, которая, стремясь по прямой линии к точке опоры, сопротивляется сгибанию и перелому, чтобы сохранить твердость рычага. Эту движущую силу нельзя усмотреть в самой материи машины, иначе твердость, от которой зависит механическая возможность весов, была бы использована в качестве основания для объяснения взвешивания и получился бы порочный круг. Следовательно, должна существовать невесомая материя, посредством которой и посредством движения которой возникает твердость самого коромысла весов". Кант постулирует, таким образом, особую материю, которая в отличие от данного нам в восприятии конкретного вещества, из которого сделан рычаг, не может быть предметом чувств осязания, обоняния или зрения, а представляет собой нечто лишь мыслимое. А раз она не может быть дана в восприятии, то она, естественно, не имеет никаких эмпирически фиксируемых свойств; она невесома, несжимаема и нерасширяема. Но в отличие от обычной материи она наделена свойством, которое, как правило, приписывается не материальной, а скорее духовной реальности: она является всепроникающей и обладает определенной движущей силой - свойства, которыми Аристотель, средневековые ученые и в новое время Лейбниц наделяли душу. "Для этой материи всякое тело (рассматриваемое как машина), всякий рычаг должны быть проницаемы, - пишет Кант. -...Материя, порождающая твердость, должна быть невесомой. Но так как она должна быть также внутренне проникающей, ибо она чисто динамична, то ее должно мыслить несжимаемой и распространенной во всем мировом пространстве как существующий сам по себе континуум, идею которого уже, впрочем, придумали под названием эфира не на основе опыта, а а priori (ведь никакое чувство не может узнать механизм самих чувств как предмет этих чувств)". Эта материя потому и не может быть воспринята, что органы восприятия, по Канту, сами зависят от ее сил. Каким же образом эта материя, которую Кант именует не эфиром, а теплородом, и которой приписывает динамические свойства, может гарантировать механическим машинам нужную для них идеальную твердость (или, напротив, идеальную гибкость, идеальную гладкость и т.д. - т.е. все то, благодаря чему машина сохраняет - в идеале, конечно, - свою "машинную форму")? Ведь что требуется от механизма, чтобы он был, если можно так выразиться, "математическим"? Только одно определение, но такое, каким, как хорошо осознал Платон, обладает только идеальное бытие: самотождественность. Абсолютная твердость, которой должен быть наделен, например, рычаг, нужна для того, чтобы плечи рычага неизменно (всегда) и в каждой своей точке (везде) были прямой линией. Сохранение их прямолинейности и обеспечивает эта самая всепроникающая материя, как полагает Кант. Но каким образом? "Притяжением или равноценным ему действительным, но внутренним движением по прямой линии", - говорит Кант. В отличие от эмпирически данной эта как бы идеальная материя гарантирует самотождественность материальной конструкции именно потому, что материя-теплород сама тождественна себе. Она есть абсолютная самотождественность некоторой деятельности, а именно пульсации притяжения и отталкивания, как поясняет Кант. Кантовское обращение к материи и выделение в ней неизменного, самотождественного динамического "ядра", которое не дано в чувственном опыте, но обязательно должно быть постулировано разумом как условие возможности математического естествознания, отсылает нас к Галилею. Последний ставил вопрос о том, как обосновать возможность приближения конструируемых нами материальных машин "к машинам отвлеченным и идеальным...". Условием возможности такого приближения Галилей считал неизменяемость материи. Не форма, как полагали в античности и в средние века, а сама материя, неуничтожаемая и неразрушимая, служит гарантом совершенства технических конструкций, без которых невозможен никакой эксперимент. Но в отличие от Канта у Галилея не было динамического определения материи. Тезис Галилея о неизменяемости материи по-разному истолковали Декарт и Лейбниц. Декарт отождествил материю с пространством, неизменным по определению, а Лейбниц, трактовавший материю динамически, обосновывал ее неизменность с помощью закона сохранения количества силы. Кант продолжает линию динамического истолкования материи, апеллируя уже не столько к Лейбницу, сколько к Ньютону. Приписывая умопостигаемой материи - теплороду - изначальное колебательное движение, вызываемое силами притяжения и отталкивания, Кант тем самым освобождается не только от картезианского отделения материи от движения (последнее, согласно Декарту, вносит в материю Бог), но и от ньютоновской аналогии между силой и душой. Правда, Кант при этом сознает, что его "теплород" сродни традиционному эфиру, родственнику "Архея" и "мировой души", "жизненного духа" природы. Однако этот ход мысли Кант не развивает. Объединение понятий "сила" и "жизнь" - особенность метафизики Лейбница. Правда, что касается вопроса о научном познании природы, то здесь Лейбниц, как мы помним, настаивал на необходимости отделить метафизику и естествознание: последнее должно иметь своим предметом только механический аспект природного мира, т.е. величину, форму и движение. Кант же идет дальше Лейбница, отделяя не только естествознание от метафизики, но и метафизику природы от метафизики в собственном смысле слова. Здесь Кант рассуждает в духе ньютоновской школы, влияние которой распространилось на континенте начиная с 30-40-х гг. XVIII в. Сторонники Ньютона и его последователи стремились отделить философию природы от спекулятивной метафизики. Так, например, аналогичное кантовскому соображение мы встречаем у д'Аламбера. "На место всей туманной метафизики, - пишет д'Аламбер, имея в виду философские системы от Аристотеля до Лейбница, - мы должны поставить метафизику, применение которой имеет место в естественных науках, и прежде всего в геометрии и в различных областях математики. Ибо, строго говоря, нет науки, которая не имела бы своей метафизики, если под этим понимать всеобщие принципы, на которых строится определенное учение и которые являются зародышами всех истин, содержащихся в этом учении и излагаемых в нем". Кант ставит перед натурфилософией ту же задачу, что и д'Аламбер: сформулировать всеобщие принципы математического естествознания. Естествознание, по определению Канта, есть учение о телах. Можно сказать, что предмет естествознания - это материя: здесь Кант вполне солидарен с д'Аламбером. Подобно математике, естествознание конструирует свой предмет - тела, или материю, в результате чего естественнонаучные суждения носят необходимый и всеобщий характер, т.е., на языке Канта, являются априорными. "Так как во всяком учении о природе, - пишет Кант, - имеется науки в собственном смысле лишь столько, сколько имеется в нем априорного познания, то учение о природе будет содержать науку в собственном смысле лишь в той мере, в какой может быть применена в нем математика". Но если естествознание становится наукой благодаря математике и благодаря тому конструированию понятий, которое родственно математическому, то какая функция отводится метафизике природы? Дело в том, говорит Кант, что математическая физика не может обойтись без философских принципов: понятия движения, наполненного пространства, инерции, силы и т.д. содержат в себе философские предпосылки. Но раз в науке содержатся - явно или скрыто - также и философские положения, то миссия философии ясна: она имеет своей задачей прояснение теоретических постулатов науки. "Чтобы стало возможным приложение математики к учению о телах, лишь благодаря ей способному стать наукой о природе, должны быть предпосланы принципы конструирования понятий, относящиеся к возможности материи вообще; иначе говоря, в основу должно быть положено исчерпывающее расчленение понятия о материи вообще". Метафизика природы - это, стало быть, метафизика материи.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.009 сек.) |