|
|||||||
АвтоАвтоматизацияАрхитектураАстрономияАудитБиологияБухгалтерияВоенное делоГенетикаГеографияГеологияГосударствоДомДругоеЖурналистика и СМИИзобретательствоИностранные языкиИнформатикаИскусствоИсторияКомпьютерыКулинарияКультураЛексикологияЛитератураЛогикаМаркетингМатематикаМашиностроениеМедицинаМенеджментМеталлы и СваркаМеханикаМузыкаНаселениеОбразованиеОхрана безопасности жизниОхрана ТрудаПедагогикаПолитикаПравоПриборостроениеПрограммированиеПроизводствоПромышленностьПсихологияРадиоРегилияСвязьСоциологияСпортСтандартизацияСтроительствоТехнологииТорговляТуризмФизикаФизиологияФилософияФинансыХимияХозяйствоЦеннообразованиеЧерчениеЭкологияЭконометрикаЭкономикаЭлектроникаЮриспунденкция |
Сложение гармонических колебаний одного направления. БиенияПусть совершаются два гармонических колебания одного направления и одинаковой частоты Рассматривая систему как два уравнения с двумя неизвестными А и φ0, найдем, возведя их в квадрат и сложив, а затем разделив второе на первое: Подставляя одно уравнение в другое, получим: .Или окончательно, используя теорему косинусов суммы, имеем: . Тело, участвуя в двух гармонических колебаниях одного направления и одинаковой частоты, совершает также гармоническое колебание в том же направлении и с той же частотой, что и складываемые колебания. Амплитуда результирующего колебания зависит от разности фаз (φ2-φ1) сгладываемых колебаний. В зависимости от разности фаз (φ2-φ1): 1) (φ2-φ1) = ±2mπ (m=0, 1, 2, …), тогда A= А1+А2, т. е. амплитуда результирующего колебания А равна сумме амплитуд складываемых колебаний;
Определение частоты тона (звука определенной высоты биений эталонным и измеряемым колебаниями — наиболее широко применяемый на метод сравнения измеряемой величины с эталонной. Метод биений используется для настройки музыкальных инструментов, анализа слуха и т. д. 41.Сложение взаимноперпендикулярных колебаний. Фигуры Лиссажу. Найдем результат сложения двух гармонических колебаний одинаковой частоты ω, которые происходят во взаимно перпендикулярных направлениях вдоль осей х и у. Начало отсчета для простоты выберем так, чтобы начальная фаза первого колебания была равна нулю, и запишем это в виде где α — разность фаз обоих колебаний, А и В равны амплитудам складываемых колебаний. Уравнение траектории результирующего колебания определим исключением из формул (1) времени t. Записывая складываемые колебания как ; и заменяя во втором уравнении 42.Связанные системы. Парциальные и нормальные колебания. Представление движениясистемы с помощью нормальных колебаний. СВЯЗАННЫЕ СИСТЕМЫ- колебательные системы с двумя и более степенями свободы, рассматриваемые как совокупность систем с одной степенью свободы каждая (парциальных систем), взаимодействующих между собой. Два или неск. колебательных контуров у к-рых колебания в одном контуре из-за наличия связи вызывают колебания в других. Происходит переход энергии из одной системы в другую. Наличие связи изменяет характер резонансных явлений по сравнению с одиночным контуром. Резонанс наступает всякий раз, когда частота внеш. воздействия совпадает с одной из частот собственных колебаний всей системы, отличающихся от парциальных частот отд. контуров состоящей из двух контуров, резонанс наступает на двух разл. частотах.
43.Продольные и поперечные волны. Амплитуда, фаза, скорость распространения волы. Длина волны - это расстояние между ближайшими точками, колеблющимися в одинаковых фазах. Величины, характеризующие волну: длина волны, скорость волны, период колебаний, частота колебаний. Единицы измерения в системе СИ: длина волны [лямбда] = 1 м, скорость распространения волны [ v ] = 1м/с. период колебаний [ T ] = 1c. частота колебаний [ ню ] = 1 Гц Волны, рассматриваемый параметр которых изменяется периодически вдоль оси распространения, называются продольными волнами. Если колебания происходят перпендикулярно оси распространения волны (как у электромагнитных волн, например), то такие волны называются поперечными. В поперечной волне колебания происходят в направлении, перпендикулярном направлению распространения волны. Как и в случае продольных волн амплитуды колебаний всех шариков одинаковы, а фаза линейно изменяется от шарика к шарику y 0= B sin(w t); y 1= B sin(w t+ Dj); y 2= B sin(w t+ 2Dj); y 3= B sin(w t+ 3Dj); Амплитуда — максимальное значение смещения или изменения переменной величины от среднего значения при колебательном или волновом движении. Неотрицательная скалярная величина, размерность которой совпадает с размерностью определяемой физической величины. Фаза колебаний — аргумент функции cos(ω t + φ), описывающий гармонический колебательный процесс.
Поиск по сайту: |
Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Студалл.Орг (0.004 сек.) |